Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.8.921

Alleviating Effects of Mulberry Fruit Extract on Postprandial Hyperglycemia in Streptozotocin-induced Diabetic Mice  

Choi, Kyung Ha (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University)
Kang, Ji-Hye (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University)
Han, Ji-Sook (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University)
Publication Information
Journal of Life Science / v.26, no.8, 2016 , pp. 921-927 More about this Journal
Abstract
Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. The alpha-glucosidase inhibitors regulate postprandial hyperglycemia by impeding the rate of carbohydrate (such as starch) digestion in the small intestine. This study was designed to investigate the inhibitory actions of mulberry fruit extract (MFE) on α-glucosidase and α-amylase activities, and its alleviating effect on postprandial hyperglycemia activities in vitro and in vivo. Male four-week old ICR mice and streptozotocin (STZ)-induced diabetic mice were treated with mulberry fruit extract. MFE showed strong inhibitory effects against α-glucosidase and α-amylase activities, with half-maximal inhibitory concentration (IC50) values of 0.16 and 0.14 mg/ml, respectively, and was more effective than acarbose, which was used as a positive control. The increase in postprandial blood glucose levels was more significantly attenuated in the MFE-administered group mice than in the control group mice of both STZ-induced diabetic and normal mice. Moreover, the area under the glucose response curve significantly decreased following MFE administration in diabetic mice. These results indicate that MFE may be a potent inhibitor of α-glucosidase and α-amylase, and helpful in suppressing postprandial hyperglycemia in diabetic mice. The mulberry fruit extracts may be considered as a potential candidate for the management of diabetes.
Keywords
α -Amylase; α -Glucosidase; diabetic mice; mulberry fruit extract; postprandial hyperglycemia;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Abrahamson, M. J. 2004. Optimal glycemic control in type 2 diabetes mellitus: fasting and postprandial glucose in context. Arch. Intern. Med. 164, 486-491.   DOI
2 Baron A. D. 1998. Postprandial hyperglycemia and α-glucosidase inhibitors. Diabetes Res. Clin. Pract. 40, 51-55.   DOI
3 Bhandari, M. R., Jong-Anurakkun, N., Hong, G and Kawabata, J. 2007. α-glucosidase and α-amylase inhibitory activities of nepalese medicinal herb pakhanbhed (Bergenia ciliata, Haw.). Food Chem. 106, 247-252.
4 Choi, S. J., Jeon, H. J., Lee, C. U., Yoon, S. H., Bae, S. K., Chin, Y. W. and Yoon, K. D. 2015. Isolation and development of quantification method for cyanidin-3-glucoside and cyanidin-3-rutinoside in mulberry fruit by high-performance countercurrent chromatography and high-performance liquid chromatography. Nat. Prod. Sci. 21, 20-24.
5 Hanefeld, M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J. Diabetes Complications 12, 228-237.   DOI
6 Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. and Neil, H. A. 2008. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577-1589.   DOI
7 Inoue, I., Takahashi, K., Noji, S., Awata, T., Negishi, K. and Katayama, S. 1997. Acarbose controls postprandial hyperproinsulinemia in non-insulin dependent diabetes mellitus. Diabetes Res. Clin. Pract. 36, 143-151.   DOI
8 Iwai, K., Kim, M. Y., Onodera, A. and Matsue, H. 2006. Alpha-glucosidase inhibitory and antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb. J. Agric. Food Chem. 54, 4588-4592.   DOI
9 Jung, J. K. and Park, Y. K. 2010. Antioxidative effect of so-dang-tang in streptozotocin-diabetic rats. J. Life Sci. 20, 691-696.   DOI
10 Kang, T.H., Hur, J. Y., Kim, H. B., Ryu, J. H. and Kim, S. Y. 2006. Neuroprotective effects of the cyanidin-3-O-beta-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neurosci. Lett. 391, 122-126.   DOI
11 Kim, J. W., Cha, J. Y., Heo, J. S., Jin, H. J. and Cho, Y. S. 2008. CMS-1 hot water extract on streptozotocin-induced diabetic rats. J. Life Sci. 18. 1584-1591.   DOI
12 Kim, H., Yoon, Y. J., Shon, J. H., Cha, I. J., Shin, J. G. and Liu, K. H. 2006. Inhibitory effects of fruit juices on CYP3A activity. Drug Metab Dispos. 34, 521-523.   DOI
13 Kim, J. S. 2004. Effect of Rhemanniae radix on the hyperglycemic mice induced with streptozotocin. J. Kor. Med. Sci. 33, 1133-1138.
14 Kim, K. Y., Nam, K. A., Kurihara, H. and Kim, S. M. 2008. Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69, 2820-2825.   DOI
15 Koivisto, V. A. 1993. Insulin therapy in type II diabetes. Diabetes Care 16, 29-39.   DOI
16 Lebovitz, H. E. 1998. Postprandial hyperglycaemic state: importance and consequences. Diabetes Res. Clin. Pract. 40, 27-28.   DOI
17 Liu, L.K., Lee, H. J., Shih, Y. W., Chyau, C. C. and Wang, C. J. 2008. Mulberry anthocyanin extracts inhibit LDL oxidation and macrophage-derived foam cell formation induced by oxidative LDL. J. Food Sci. 73, 113-121.   DOI
18 Lee, H. A., Song, Y. O., Jang, M. S. and Han, J. S. 2013. Alleviating effects of baechu kimchi added Ecklonia cava on postprandial hyperglycemia in diabetic mice. Prev. Nutr. Food Sci. 18, 163-168.   DOI
19 Lee, J. S., Synytsya, A., Kim, H. B., Choi, D. J., Lee, S., Lee, J. S., Kim, W. J., Jang, S. J. and Park, Y. I. 2013. Purification, characterization and immunomodulating activity of a pectic polysaccharide isolated from korean mulberry fruit oddi (Morus alba L.). Int. Immunopharmacol. 17, 858-866.   DOI
20 Liu, C. J. and Lin, J. Y. 2013. Anti-inflammatory effects of phenolic extracts from strawberry and mulberry fruits on cytokine secretion profiles using mouse primary splenocytes and peritoneal macrophages. Int. Immunopharmacol. 16, 165-170.   DOI
21 Li, S. Z. 1982. Compendium of materia medica. People's Medical Press, Beijing. 2066-2067.
22 Masahito, T., Seiya, I., Fumihiko, H. and Takanori, T. 2014. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J. Nutr. 140, 527-533.
23 McDougall, G. J., Shpiro, F., Dobson, P., Smith, P., Blake, A. and Stewart, D. 2005. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J. Agric. Food Chem. 53, 2760-2766.   DOI
24 Nishioka, T., Kawabata, J. and Aoyama, Y. 1998. Baicalein, an alpha-glucosidase inhibitor from Scutellaria baicalensis. J. Nat. Prod. 61, 1413-1415.   DOI
25 Ritta, T., Essi, S., Niina, T., Elina, H., Kyllikki, K. and Leo, N. 2010. Berries modify the postprandial plasma glucose response to sucrose in health subjects. Br. J. Nutr. 103, 1094-1097.
26 Pawlowska, A. M., Oleszek, W. and Braca, A. 2008. Qualiquantitative analyses of flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. J. Agric. Food Chem. 56, 3377-3380.   DOI
27 Priscilla, D. H., Roy, D., Suresh, A., Kumar, V. and Thirumurugan, K. 2014. Naringenin inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem. Biol. Interact. 210, 77-85.   DOI
28 Ratner, R. E. 2001. Controlling postprandial hyperglycemia. Am. J. Cardiol. 88, 26-31.   DOI
29 Scott, L. J. and Spencer, C. M. 2000. Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus. Drugs 59, 521-549.   DOI
30 Sirichai, A., Sirintorn, Y. A., Piyawan, C. and Natthakarn, W. 2011. Cyanidin-3-rutinoside alleviates postprandial hyperglycemia and its synergism with acarbose by inhibition of intestinal α-glucosidase. J. Clin. Biochem. Nutr. 49, 36-41.   DOI
31 Stern, J. L., Hagerman, A. E., Steinberg, P. D. and Mason, P. K. 1996. Phlorotannin-protein interactions. J. Chem. Ecol. 22, 1877-1899.   DOI
32 Temelkova-Kurktschiev, T. S., Koehler, C., Henkel, E., Leonhardt, W., Fuecker, K. and Hanefeld, M. 2000. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 23, 1830-1834.   DOI
33 Youn, J. Y., Park, H. Y. and Cho, K. H. 2004. Anti-hyperglycemic activity of Commelina communis L.: Inhibition of α-glucosidase. Diabetes Res. 66, 149-155.
34 Wanatabe, J., Kawabata, J., Kurihara, H. and Niki, R. 1997. Isolation and identification of α-glucosidase inhibitors from tochu-cha (Eucommia ulmoides). Biosci. Biotechnol. Biochem. 61, 177-178.   DOI
35 Yadav, S., Vats, V., Dhunnoo, Y. and Grover, J. K. 2002. Hypoglycemic and antihyperglycemic activity of Murraya koenigii leaves in diabetic rats. J. Ethnopharmacol. 82, 111-116.   DOI
36 Yang, X., Yang, L. and Zheng, H. 2010. Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem. Toxicol. 48, 2374-2379.   DOI