• Title/Summary/Keyword: Star Observation

Search Result 167, Processing Time 0.028 seconds

All-In-One Observing Software for Small Telescope

  • Han, Jimin;Pak, Soojong;Ji, Tae-Geun;Lee, Hye-In;Byeon, Seoyeon;Ahn, Hojae;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2018
  • In astronomical observation, sequential device control and real-time data processing are important to maximize observing efficiency. We have developed series of automatic observing software (KAOS, KHU Automatic Observing Software), e.g. KAOS30 for the 30 inch telescope in the McDonald Observatory and KAOS76 for the 76 cm telescope in the KHAO. The series consist of four packages: the DAP (Data Acquisition Package) for CCD Camera control, the TCP (Telescope Control Package) for telescope control, the AFP (Auto Focus Package) for focusing, and the SMP (Script Mode Package) for automation of sequences. In this poster, we introduce KAOS10 which is being developed for controlling a small telescope such as aperture size of 10 cm. The hardware components are the QHY8pro CCD, the QHY5-II CMOS, the iOptron CEM 25 mount, and the Stellarvue SV102ED telescope. The devices are controlled on ASCOM Platform. In addition to the previous packages (DAP, SMP, TCP), KAOS10 has QLP (Quick Look Package) and astrometry function in the TCP. QHY8pro CCD has RGB Bayer matrix and the QLP transforms RGB images into BVR images in real-time. The TCP includes astrometry function which adjusts the telescope position by comparing the image with a star catalog. In the future, We expect KAOS10 be used on the research of transient objects such as a variable star.

  • PDF

X-RAY PROPERTIES OF THE PULSAR PSR J0205+6449 IN 3C 58

  • Kim, Minjun;An, Hongjun
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • We report X-ray timing and spectral properties of the pulsar PSR J0205+6449 measured using NuSTAR and Chandra observatories. We measure the pulsar's rotation frequency ν = 15.20102357(9) s-1 and its derivative $\dot{\nu}=-4.5(1){\times}10^{-11}\;s^{-2}$ during the observation period, and model the 2-30 keV on-pulse spectrum of the pulsar with a power law having a photon index Γpsr = 1.07 ± 0.16 and a 2-30 keV flux F2-30 keV = 7.3±0.6 × 10-13 erg cm-2 s-1. The Chandra 0.5-10 keV data are analyzed for an investigation of the pulsar's thermal emission properties. We use thermal and non-thermal emission models to fit the Chandra spectra and infer the surface temperature T∞ and luminosity Lth of the neutron star to be T∞ = 0.5 - 0.8 MK and Lth = 1 - 5 × 1032 erg s-1. This agrees with previous results which indicated that PSR J0205+6449 has a low surface temperature and luminosity for its age of 800-5600 yrs.

Observation of Three Variable Stars and an Asteroid Using Small Telescopes in the United Arab Emirates (UAE)

  • Mohammad Sh. Odeh;Mashhoor Al-Wardat
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.19-27
    • /
    • 2023
  • We present the results of using small telescopes in the United Arab Emirates (UAE) for observing variable stars and asteroids. Two telescopes, namely, 5" apochromatic refractor and 14" Schmidt-Cassegrain, at Al-Khatim Observatory (M44) were used for the observations. The targets were the three variable stars RR GEM, AG LMi, and DL CMi and the asteroid 22 Kalliope. We found a good consistency between our light curves and published ones for the calibration targets, i.e., the asteroid 22 Kalliope and the variable star RR GEM. According to previous studies, AG LMi has two suggested periods, 16.3 hours and 32.62 hours. Our results clearly confirm the second one, with a period of 32.6175 hours. The star DL CMi has several suggested periods as per previous studies, such as 4.0173 days, 1.9606 days, and 2.0086 days. Our observations confirm the first one, with a period of 4.0159 days. These results demonstrate the effectiveness of using small telescopes for observing variable stars and asteroids. This work provides some recommendations on using small telescopes for such observations.

Spiral Magnetic Field Lines in a Hub-Filament Structure, Monoceros R2

  • Hwang, Jihye;Kim, Jongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.59.3-60
    • /
    • 2020
  • We present the results of polarization observations at submillimeter wavelengths towards Monoceros R2 (Mon R2). The polarized thermal dust emission was obtained from SCUBA-2/POL-2 at 450 ㎛ and 850 ㎛, simultaneously. This observation is a part of the JCMT BISTRO survey project. The polarization angle distributions at 450 ㎛ and 850 ㎛ are similar and the mean value of angle differences at two wavelengths is 5.5 degrees. The Mon R2 is one of massive star-forming regions containing a clear hub-filamentary structure. The hub region shows star formation activities, and surrounding filaments provide channels for matters to move into the hub region. It is not well known the role of magnetic fields in a hub-filamentary structure. Some studies have shown well-ordered polarization segments along a filamentary structure and magnetic field morphology traced by polarization segments is interpreted as to help gas flow along the filamentary structrue. Our observations shows that filaments in Mon R2 have spiral structure and the magnetic field lines are parallel to the filaments. We interpret that the spiral structure can be formed by a rotation hub-filament system with gas flowing along the filaments to the hub. We found several dust clumps at the central part of the hub region of the Mon R2. They seems to be formed at locations where spiral field lines meet each other. These results show one observational example that a magnetic field play a role in gas flow.

  • PDF

Influence of Post-Sintering Annealing Conditions on the Microstructure and Magnetic Properties of Nd-Fe-B Magnet (Nd-Fe-B 소결자석의 소결 후 열처리 조건에 따른 미세조직 및 자기적 특성 변화)

  • Yunjong Jung;Soonjik Hong;Dong-Hwan Kim;Kyoung-Hoon Bae;Gian Song
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.9-15
    • /
    • 2024
  • Nd-Fe-B permanent magnets have been utilized on various industrial fields such as electric vehicles, generator, robots with actuator, etc, due to their outstanding magnetic properties even 10 times better than conventional magnets. Recently, there are many researches that report magnetic properties improved by controlling microstructure through adjusting alloying elements or conducting various processing. Especially, post-sintering annealing (PSA) can significantly improve the coercivity by modifying the distribution and morphology of Nd-rich phase which formed at grain boundaries. In this study, Nd-Fe-B sintered magnets were subjected to primary heat treatment followed by secondary heat treatment at 460℃, 500℃, and 540℃ to investigate the changes in microstructure and magnetic properties with the secondary heat treatment temperature. EBSD analysis was conducted to compare anisotropic characteristics. Through the SEM and TEM observation for analyzing the morphology and distribution of Nd-rich phase, we investigated the relationship between microstructure and magnetic properties of sintered Nd-Fe-B magnets.

Relative Sunspot Number Observed from 2002 to 2011 at ButterStar Observatory

  • Oh, Sung-Jin;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.103-113
    • /
    • 2012
  • The ButterStar Observatory at the Dongducheon High School has been working for photographic observations of the Sun since October 16, 2002. In this study, we observed the Sun at the ButterStar observatory for 3,364 days from October 16, 2002 to December 31, 2011, and analyzed the photographic sunspot data obtained in 1,965 days. The correction factor $K_b$ for the entire observing period is 0.9519, which is calculated using the linear least square method to the relationship between the daily sunspot number, $R_B$, and the daily international relative sunspot number, $R_i$. The yearly correction factor calculated for each year varies slightly from year to year and shows a trend to change along the solar cycle. The correction factor is larger during the solar maxima and smaller during the solar minima in general. This implies that the discrepancy between a relative sunspot number, R, and the daily international relative sunspot number, $R_i$, can be reduced by using a yearly correction factor. From 2002 to 2008 in solar cycle 23, 35.4% and 64.6% of sunspot groups and 35.1% and 64.9% of isolated sunspots in average occurred in the northern hemisphere and in the southern hemisphere, respectively, and from 2008 to 2011 in solar cycle 24, 61.3% and 38.7% of sunspot groups and 65.0% and 35.0% of isolated sunspots were observed, respectively. This result shows that the occurrence frequency for each type of sunspot group changes along the solar cycle development, which can be interpreted as the emerging and decaying process of sunspot groups is different depending on the phase of solar cycle. Therefore, it is considered that a following study would contribute to the efforts to understand the dependence of the dynamo mechanism on the phase of solar cycle.

The Interplay between Star Formation and AGN Activities : A Case Study of LQSONG

  • Kim, Ji Hoon;Im, Myungshin;Kim, Dohyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.84.1-84.1
    • /
    • 2012
  • One of the most intriguing questions regarding black hole (BH)-galaxy co-evolution picture is how the BH accretion, or active galactic nucleus (AGN) activity is linked to star formation (SF) activity. While it is suggested that AGN luminosity of quasars correlates with SF luminosity, it is still unclear how AGN activity is connected to SF activity based on host galaxy properties. Utilizing AKARI's unique slit-less spectroscopic capability and wavelength coverage, we probed star formation activity of several types of AGNs by measuring the PAH 3.3 ${\mu}m$ emission. First, we detected the PAH 3.3 ${\mu}m$ emission from seven out of 27 Seyfert type-1 galaxies at z~0.36. While these galaxies deviate significantly from the local Mbh-${\sigma}$ relation meaning their black holes proceed the host galaxies in terms of evolution, they appear to follow the correlation between nuclear SF and AGN activities of local Seyfert type-1 galaxies. This implies that SF and AGN activities are directly connected at the nuclear region for these Seyfert type-1 AGNs. We also obtained 2-5 ${\mu}m$ spectra for subsamples of Quasar Spectroscopic Observation in Near-infrared Grism (QSONG) which consists of reverberation-mapped AGNs and PG-QSOs. We detected the PAH 3.3 ${\mu}m$ emission from 16 out of 31 reverberation-mapped AGNs and 10 out of 49 PG-QSOs and measured their line strengths. We present the correlations between SF and AGN activities and discuss if there is any dependency of the correlations on properties of host galaxies, such as morphology, or the presence of radio jets.

  • PDF

Conceptual Design Study of NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Lee, Dae-Hee;Moon, Bongkon;Pyo, Jeonghyun;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Nam, Ukwon;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.82.2-82.2
    • /
    • 2013
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is being developed by KASI. The NISS will perform the imaging low-resolution spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, starforming regions and so on. The off-axis reflecting telescope with a wide field of view (2 deg. ${\times}$ 2 deg.) will be operated in the wavelength range from 0.95 to $3.8{\mu}m$. In order to reduce thermal noise, a telescope and a HgCdTe infrared sensor will be cooled down to 200K and 80K, respectively. To evade a stray light outside a field of view and use limited space efficiently, the NISS adopted the off-axis reflective optical system. The primary and secondary mirrors, optomechanical part and mechanical structure were designed to use the same material. It will lessen the degradation of optical performance due to a thermal variation. The purpose of NISS is the observation of cosmic near-infrared background in the wide wavelength range as well as the detection of near-infrared spectral lines in nearby galaxies, cluster of galaxies and star forming regions. It will give us less biased information on the star formation history. In addition, we will demonstrate the space technologies related to the development of the Korea's leading near-infrared instrument for the future large infrared telescope, SPICA.

  • PDF

Near-Infrared Imaging Spectrometer onboard NEXTSat-1

  • Jeong, Woong-Seob;Lee, Dae Hee;Moon, Bongkon;Park, Kwijong;Park, Sung-Joon;Pyo, Jeonghyun;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Kim, Mingyu;Lee, Duk-Hang;Nam, Ukwon;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.70.1-70.1
    • /
    • 2013
  • New space program for "Next-Generation Small Satellite (NEXTSat)" launched last year after the success of the series of Science & Technology Satellite (STSAT). KASI proposed the near-infrared imaging spectrometer as a scientific payload onboard NEXTSat-1. It was selected as one of two scientific payloads. The approved scientific payload is the near-infrared imaging spectrometer for the study of star formation history (NISS). The efficient near-infrared observation can be performed in space by evading the atmospheric emission as well as other thermal noise. The observation of cosmic near-infrared background enables us to reveal the early Universe in an indirect way through the measurement of absolute brightness and spatial fluctuation. The detection of near-infrared spectral lines in nearby galaxies, cluster of galaxies and star forming regions give us less biased information on the star formation. In addition, the NISS will be expected to demonstrate our technologies related to the development of the Korea's leading near-infrared instrument for the future large infrared telescope, SPICA.

  • PDF

Detection of an Impact Flash Candidate on the Moon with an Educational Telescope System

  • Kim, Eunsol;Kim, Yong Ha;Hong, Ik-Seon;Yu, Jaehyung;Lee, Eungseok;Kim, Kyoungja
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.121-125
    • /
    • 2015
  • At the suggestion of the NASA Meteoroid Environment Office (NASA/MEO), which promotes lunar impact monitoring worldwide during NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) mission period (launched Sept. 2013), we set up a video observation system for lunar impact flashes using a 16-inch educational telescope at Chungnam National University. From Oct. 2013 through Apr. 2014, we recorded 80 hours of video observation of the unilluminated part of the crescent moon in the evening hours. We found a plausible candidate impact flash on Feb. 3, 2014 at selenographic longitude $2.1^{\circ}$ and latitude $25.4^{\circ}$. The flash lasted for 0.2 s and the light curve was asymmetric with a slow decrease after a peak brightness of $8.7{\pm}0.3mag$. Based on a star-like distribution of pixel brightness and asymmetric light curve, we conclude that the observed flash was due to a meteoroid impact on the lunar surface. Since unequivocal detection of an impact flash requires simultaneous observation from at least two sites, we strongly recommend that other institutes and universities in Korea set up similar inexpensive monitoring systems involving educational or amateur telescopes, and that they collaborate in the near future.