Browse > Article
http://dx.doi.org/10.5303/JKAS.2021.54.1.1

X-RAY PROPERTIES OF THE PULSAR PSR J0205+6449 IN 3C 58  

Kim, Minjun (Department of Astronomy and Space Science, Chungbuk National University)
An, Hongjun (Department of Astronomy and Space Science, Chungbuk National University)
Publication Information
Journal of The Korean Astronomical Society / v.54, no.1, 2021 , pp. 1-8 More about this Journal
Abstract
We report X-ray timing and spectral properties of the pulsar PSR J0205+6449 measured using NuSTAR and Chandra observatories. We measure the pulsar's rotation frequency ν = 15.20102357(9) s-1 and its derivative $\dot{\nu}=-4.5(1){\times}10^{-11}\;s^{-2}$ during the observation period, and model the 2-30 keV on-pulse spectrum of the pulsar with a power law having a photon index Γpsr = 1.07 ± 0.16 and a 2-30 keV flux F2-30 keV = 7.3±0.6 × 10-13 erg cm-2 s-1. The Chandra 0.5-10 keV data are analyzed for an investigation of the pulsar's thermal emission properties. We use thermal and non-thermal emission models to fit the Chandra spectra and infer the surface temperature T∞ and luminosity Lth of the neutron star to be T∞ = 0.5 - 0.8 MK and Lth = 1 - 5 × 1032 erg s-1. This agrees with previous results which indicated that PSR J0205+6449 has a low surface temperature and luminosity for its age of 800-5600 yrs.
Keywords
stars: pulsars: general; stars: pulsars: individual: PSR J0205+6449; X-rays: stars;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abdo, A. A., Ajello, M., Allafort, A., et al. 2013, The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars, ApJS, 208, 17   DOI
2 Kuiper, L., Hermsen, W., Urama, J. O., et al. 2010, Hard X-ray Timing and Spectral Characteristics of the Energetic Pulsar PSR J0205+6449 in Supernova Remnant 3C 58. An RXTE PCA/HEXTE and XMM-Newton View on the 0.5-250 keV Band, A&A, 515, A34   DOI
3 Kuiper, L., & Hermsen, W. 2015, The Soft γ-ray Pulsar Population: A High-energy Overview, MNRAS, 449, 3827   DOI
4 Livingstone, M. A., Ransom, S. M., Camilo, F., et al. 2009, X-ray and Radio Timing of the Pulsar in 3C 58, ApJ, 706, 1163   DOI
5 Loredo, T. J. 1992, Promise of Bayesian Inference for Astrophysics. In: Feigelson E. D., Babu G. J. (eds) Statistical Challenges in Modern Astronomy (New York: Springer), 275
6 Madsen, K. K., Harrison, F. A., Markwardt, C. B., et al. 2015, Calibration of the NuSTAR High-energy Focusing X-ray Telescope, ApJS, 220, 8   DOI
7 Miller, M. C., Lamb, F. K., Dittmann, A. J., et al. 2019, PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter, ApJL, 887, L24   DOI
8 Mori, K., & Ho, W. C. G. 2007, Modelling Mid-Z Element Atmospheres for Strongly Magnetized Neutron Stars, MN-RAS, 377, 905   DOI
9 Ozel, F., & Freire, P. 2016, Masses, Radii, and the Equation of State of Neutron Stars, ARA&A, 54, 401   DOI
10 Pavlov, G. G., Shibanov, Y. A., Zavlin, V. E., & Meyer, R. D. 1995, Neutron Star Atmospheres, NATO Adv. Sci. Inst. C, 450, 71
11 Potekhin, A. Y., Zyuzin, D. A., Yakovlev, D. G., et al. 2020, Thermal Luminosities of Cooling Neutron Stars, MNRAS, 496, 5052   DOI
12 Reis, R. C., Reynolds, M. T., Miller, J. M., & Walton, D. J. 2014, Reflection from the Strong Gravity Regime in a Lensed Quasar at Redshift z = 0.658, Nature, 507, 207   DOI
13 Lattimer, J. M. 2012, The Nuclear Equation of State and Neutron Star Masses, Annu. Rev. Nucl. Part. Sci., 62, 485   DOI
14 Roberts, D. A., Goss, W. M., Kalberla, P. M. W., et al. 1993, High Resolution H i Observations of 3C 58, A&A, 274, 427
15 Romani, R. W. 1996, Gamma-Ray Pulsars: Radiation Processes in the Outer Magnetosphere, ApJ, 470, 469   DOI
16 Shapiro, S. L., & Teukolsky, S. A. 1986, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Hoboken, NJ: John Wiley & Sons)
17 Slane, P., Helfand, D. J., van der Swaluw, E., & Murray, S. S. 2004, New Constraints on the Structure and Evolution of the Pulsar Wind Nebula 3C 58, ApJ, 616, 403   DOI
18 Stephenson, F. R. 1971, Suspected Supernova in A.D. 1181, QJRAS, 12,
19 Tsujimoto, M., Guainazzi, M., Plucinsky, P. P., et al. 2011, Cross-calibration of the X-ray Instruments Onboard the Chandra, INTEGRAL, RXTE, Suzaku, Swift, and XMMNewton Observatories Using G21.5-0.9, A&A, 525, A25   DOI
20 Vigano, D., Rea, N., Pons, J. A., et al. 2013, Unifying the Observational Diversity of Isolated Neutron Stars via Magneto-thermal Evolution Models, MNRAS, 434, 123   DOI
21 An, H., Madsen, K. K., Westergaard, N. J. et al., 2014, Inflight PSF Calibration of the NuSTAR Hard X-ray Optics, SPIE, 9144, 91441Q
22 An, H., Cumming, A., & Kaspi, V. M. 2018, Flux Relaxation after Two Outbursts of the Magnetar SGR 1627-41 and Possible Hard X-Ray Emission, ApJ, 859, 16   DOI
23 An, H. 2019, NuSTAR Hard X-Ray Studies of the Pulsar Wind Nebula 3C 58, ApJ, 876, 150   DOI
24 Bietenholz, M. F. 2006, Radio Images of 3C 58: Expansion and Motion of Its Wisp, ApJ, 645, 1180   DOI
25 Chamel, N., & Haensel, P. 2008, Physics of Neutron Star Crusts, LRR, 11, 10
26 Bietenholz, M. F., Kondratiev, V., Ransom, S., et al. 2013, The Proper Motion of PSR J0205+6449 in 3C 58, MNRAS, 431, 2590   DOI
27 Brown, E. F., & Cumming, A. 2009, Mapping Crustal Heating with the Cooling Light Curves of Quasi-Persistent Transients, ApJ, 698, 1020   DOI
28 Cackett, E. M., Brown, E. F., Cumming, A., et al. 2013, A Change in the Quiescent X-Ray Spectrum of the Neutron Star Low-mass X-Ray Binary MXB 1659-29, ApJ, 774, 131   DOI
29 Courvoisier, T. J.-L., Beckmann, V., Bourban, G., et al. 2003, Simultaneous Observations of the Quasar 3C 273 with INTEGRAL and RXTE, A&A, 411, L343   DOI
30 Davis, J. E. 2001, Event Pileup in Charge-coupled Devices, ApJ, 562, 575   DOI
31 Demorest, P. B., Pennucci, T., Ransom, S. M., et al. 2010, A Two-solar-mass Neutron Star Measured Using Shapiro Delay, Nature, 467, 1081   DOI
32 de Jager, O. C., Raubenheimer, B. C., & Swanepoel, J. W. H. 1989, A Powerful Test for Weak Periodic Signals with Unknown Light Curve Shape in Sparse Data, A&A, 221, 190
33 Fesen, R., Rudie, G., Hurford, A., & Soto, A. 2008, Optical Imaging and Spectroscopy of the Galactic Supernova Remnant 3C 58 (G130.7+3.1), ApJS, 174, 379   DOI
34 Fruscione, A., McDowell, J. C., Allen, G. E., et al. 2006, CIAO: Chandra's Data Analysis System, SPIE, 6270, 62701V
35 Harding, A. K. 2013, The Neutron Star Zoo, Frontiers Phys., 8, 679   DOI
36 Harrison, F. A., Craig, W. W., Christensen, F. E., et al. 2013, The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-Ray Mission, ApJ, 770, 103   DOI
37 Kim, S., Park, J., & An, H. 2019, Investigating the Pulsar Wind Nebula 3C 58 Using Emission Models, JKAS, 52, 173
38 Ho, W. C. G., Potekhin, A. Y., & Chabrier, G. 2008, Model X-Ray Spectra of Magnetic Neutron Stars with Hydrogen Atmospheres, ApJS, 178, 102   DOI
39 Kim, M., & An, H. 2019, Measuring Timing Properties of PSR B0540-069, JKAS, 52, 41
40 Kim, M., & An, H. 2020, Characterizing X-Ray Properties of the Gamma-Ray Pulsar PSR J1418-6058 in the Rabbit Pulsar Wind Nebula, ApJ, 892, 5   DOI
41 Weisskopf, M. C., Guainazzi, M., Jahoda, K., et al. 2010, On Calibrations Using the Crab Nebula and Models of the Nebular X-Ray Emission, ApJ, 713, 912   DOI
42 Yakovlev, D. G., & Pethick, C. J. 2004, Neutron Star Cooling, ARA&A, 42, 169   DOI
43 Kothes, R. 2013, Distance and Age of the Pulsar Wind Nebula 3C 58, A&A, 560, A18   DOI