The objective of this study is to evaluate the impact of the high resolution topographies and landuses data on simulated meteorological variables (wind speed at 10 m, temperature at 2 m and relative humidity at 2 m) in WRF. We compare the results with WRF simulation using each resolution of the topographies and landuses, and with 37 AWS observation data on the Seoul metropolitan regions. According to results of using high-resolution topography, WRF model gives better topographical expression over domain. And we can separate more detail (Low intensity residential, high intensity residential, industrial or commercial) using high resolution landuses data. The result shows that simulated temperature and wind speed are generally higher than AWS observation data. However, simulation trend with temperature, wind speed, and relative humidity are similar to observation data. The reason for that is that the high precipitation event occurred in CASE 1 and 2. Temperature have correlation of 0.43~0.47 and standard deviation of $2.12{\sim}2.28^{\circ}C$ in CASE 1, while correlation of more than 0.8 and standard deviation of $3.05{\sim}3.18m\;s^{-1}$ in CASE 2. In case of wind speed, correlation have lower than 0.5 and Standard Deviation of $1.88{\sim}2.34m\;s^{-1}$ in CASE 1 and 2. In statistical analysis shows that using highest resolution (U01) results are more close to the AWS observation data. It can be concluded that the topographies and landuses are important factor that affect model simulation. However, the tendency to always use high resolution topographies and landuses data appears to be unjustified, and optimal solution depends on the combination of scale effect and mechanisms of dynamic models.
Orifice meter is the most widely used flowmeter in custody transfer between KOGAS and city gas companies. Absolute pressure value is needed to calculate the gas flow of orifice metering system, but the gauge pressure transmitters are mainly used in the field. In case that the gauge pressure transmitters are used, the fixed value as standard atmospheric pressure(101.325kPa) is applied for the absolute pressure value. The real, local atmospheric pressures of each metering station are different from the standard condition as the altitude and weather conditions. In this study the flow calculation errors were quantitatively analyzed through examining the atmospheric pressures of 50 stations of KOGAS. The data for analysis are such like the time data of supplied gas amount, the altitude of each metering station, the time data of atmospheric pressures and altitudes of each weather observatory. The results showed that the local atmospheric pressures were different from the standard value and the gas flow calculation errors were distributed between $-0.024\%{\~}0.025\%$ based on the supplied gas amount in the year 1999 and 2000.
The purpose of this study is to estimate the probable period of the planting work in consideration of weather factors. The impact degree of weather factors on the control of planting schedule was measured by the possible working days on the basis of weather condition. To establish the weather standard, the researcher analyzed the questionnaires on the manager of planting work and also the meteorological data for 10 years(1983-1992) in Seoul. The results are as follows; $\circled1$ The possible period of the planting work is from March 17 to May 18 Spring and from September 26 to December 15 in Autumn during a year. $\circled2$ The problem working days of the planting work(106-130) days per year) are less than the building construction days(174 days per year), because of handling the living material of plants, specially in summer and winter.
A quality check algorithm for the Weather Information Service Engine pulsed Doppler wind lidar is developed from a view point of spatial and temporal consistencies of observed wind speed. Threshold values for quality check are determined by statistical analysis on the standard deviation of 3-component of wind speed obtained by a wind lidar, and the vertical gradient of horizontal wind speed obtained by a radiosonde system. The algorithm includes carrier-to-noise ratio (CNR) check, data availability check, and vertical gradient of horizontal wind speed check. That is, data sets whose CNR is less than -29 dB, data availability is less than 90%, or vertical gradient of horizontal wind speed is less than $-0.028s^{-1}$ or larger than $0.032s^{-1}$ are classified as 'doubtful', and flagged. The developed quality check algorithm is applied to data obtained at Bucheon station for the period from 1 to 30 September 2015. It is found that the number of 'doubtful' data shows maxima around 2000 m high, but the ratio of 'doubtful' to height-total data increases with increasing height due to atmospheric boundary height, cloud, or rainfall, etc. It is also found that the quality check by data availability is more effective than those by carrier to noise ratio or vertical gradient of horizontal wind speed to remove an erroneous noise data.
Sang Yeob Kim;Dongsoo Lee;Jung-Doung Yu;Hyung-Koo Yoon
Smart Structures and Systems
/
제34권1호
/
pp.9-15
/
2024
Oversampling algorithms are methods employed in the field of machine learning to address the constraints associated with data quantity. This study aimed to explore the variations in reliability as data volume is progressively increased through the use of oversampling algorithms. For this purpose, the synthetic minority oversampling technique (SMOTE) and the borderline synthetic minority oversampling technique (BSMOTE) are chosen. The data inputs, which included air temperature, humidity, and wind speed, are parameters used in the Fosberg Fire-Weather Index (FFWI). Starting with a base of 52 entries, new data sets are generated by incrementally increasing the data volume by 10% up to a total increase of 100%. This augmented data is then utilized to predict FFWI using a deep neural network. The coefficient of determination (R2) is calculated for predictions made with both the original and the augmented datasets. Suggesting that increasing data volume by more than 50% of the original dataset quantity yields more reliable outcomes. This study introduces a methodology to alleviate the challenge of establishing a standard for data augmentation when employing oversampling algorithms, as well as a means to assess reliability.
본 연구는 건물에너지 효율 향상을 위한 목적으로 기상데이터 변화에 따른 건물 냉 난방부하량을 예측하고 결과를 비교 분석한 것으로, 연구 성과는 다음과 같다. 1)기상청에서 입수데이터를 평가툴인 ESP-r에 활용할 수 있도록 항목별 기상데이터를 개발하였다. 표준기상 데이터의 외기온도, 습도, 풍속은 대부분의 경우 기상청데이터 보다 크거나 높았다. 수평면전일사량은 기상청데이터가 높았고, 직달일사량은 겨울철에는 표준기상데이터가, 여름철에는 기상청데이터가 많은 것으로 나타났다. 2)대학교 캠퍼스 내에 신축된 후생복지관을 대상으로 한 시뮬레이션 결과, 최대난방부하의 경우 표준년도, 2006년, 2009년이 비슷한 반면 2007년은 표준년도 대비 81%, 2008년은 96% 수준이었고, 연간난방부하는 2006년, 2008년의 순으로 난방수요가 많았다. 한편, 냉방부하의 경우에는, 상대적으로 최대냉방부하가 큰 2007년, 2009년의 연간 냉방부하보다 최대냉방부하가 가장 적은 2008년의 연간냉방부하가 더 큰 결과를 보였다. 3)냉 난방기기의 상당시간가동률을 평가한 결과, 표준년도의 최대부하대비 상당시간가동률은 2006~2009년이 표준년도에 비해 대부분 가동률이 낮았다.
Since 1990, the Renewable Big Data Research Lab at the Korea Institute of Energy Technology has been observing solar radiation at 16 sites across South Korea. Serving as the National Reference Standard Data Center for Renewable Energy since 2012, it produces essential data for the sector. By 2020, it standardized meteorological year data from 22 sites. Despite user demand for data from approximately 260 sites, equivalent to South Korea's municipalities, this need exceeds the capability of measurement-based data. In response, our team developed a method to derive solar radiation data from satellite images, covering South Korea in 400,000 grids of 500 m × 500 m each. Utilizing satellite-derived data and ERA5-Land reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), we produced standard meteorological year data for 1,000 sites. Our research also focused on data measurement traceability and uncertainty estimation, ensuring the reliability of our model data and the traceability of existing measurement-based data.
Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the evolving structure and frequency of intense weather systems and by using neural network approach. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF model will be applied to the mid-Atlantic region of United States in a forthcoming paper.
농업을 비롯한 산업활동을 효율적으로 수행하기 위해서는 전문 기상정보의 활용이 필수적이다. 영농활동에 있어서 의사지원시스템의 핵심으로 떠오르고 있는 작물 생장모형은 부단히 변화하는 대기환경에 대한 공간정보를 요구하기 때문에, 모형의 실용화를 위해서는 기상 관측밀도가 낮은 광범위한 작물 생육지역을 대상으로 일별 기상요소에 대한 공간분포를 추정해야 한다. 이러한 취지에서 본 연구는 미관측 지점을 포함하는 우리 나라 전국을 대상으로 작물모형의 구동에 필요한 최소 기상요소들 중에서 일 최고 및 일 최저기온의 공간적인 분포를 추정하고 그 추정 정도를 검증하고자 하였다. 이를 이해 먼저 58개 지점의 23년간 실측 기온자료로부터 지형기후학적 방법에 의하여 격자단위의 월별 기온평년값을 추정하고, 조화해석법에 의하여 일별값으로 변환하였다. 66개 기상청 관측소에서 수집된 임의 날짜의 최고/최저기온값과 관측소 해당 격자점의 평년값간 편차를 구한 다음, 미관측 격자점을 포함하는 한반도 전역의 기온편차를 거리역산가중법에 의하여 내삽.추정하였다. 각 격자점의 최종적인 기온 추정값은 기온 평년값에 이 편차를 더함으로써 얻었다. 얻어진 온도 분포는 위성자료로부터 추정한 지표온도분포 양상과 크게 다르지 않았다. 300여개의 자동기상관측 장비들로부터 수집된 자료와 비교한 결과, 추정오차는 $1.5^{\circ}C$~2.5$^{\circ}C$였다.
Spatiotemporal changes in the thermal environment in a large city, Seoul, Korea were analyzed using a thermal index, perceived temperature (PT), to standardize the weather conditions. PT is a standard index for the thermal balance of human beings in thermophysiological environment. For the analysis of PT, the data from long-term monitoring and intensive observations in and around the inner-city stream called 'Cheonggye' in Seoul, were compared with a reference data from the Seoul weather station. Long-term data were monitored by installing two automatic weather stations at 66m (S1) and 173m (S2) away from the center of the stream. Through the analysis of the data during the summer of 2006 and intensive observation periods, it was revealed that the stream's effects on the PT extended up to the distance of the S1 site. In winter, the increase of the PT between pre- and post-restoration was stronger at S1, which was nearer than S2 from the stream. These results suggest that PT can be used as an effective model in analyzing the changes of the thermal environment in relation with the changes of water surface areas.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.