• Title/Summary/Keyword: Standard for dynamic performance

Search Result 280, Processing Time 0.024 seconds

Modeling of 18-Pulse STATCOM for Power System Applications

  • Singh, Bhim;Saha, R.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.146-158
    • /
    • 2007
  • A multi-pulse GTO based voltage source converter (VSC) topology together with a fundamental frequency switching mode of gate control is a mature technology being widely used in static synchronous compensators (STATCOMs). The present practice in utility/industry is to employ a high number of pulses in the STATCOM, preferably a 48-pulse along with matching components of magnetics for dynamic reactive power compensation, voltage regulation, etc. in electrical networks. With an increase in the pulse order, need of power electronic devices and inter-facing magnetic apparatus increases multi-fold to achieve a desired operating performance. In this paper, a competitive topology with a fewer number of devices and reduced magnetics is evolved to develop an 18-pulse, 2-level $\pm$ 100MVAR STATCOM in which a GTO-VSC device is operated at fundamental frequency switching gate control. The inter-facing magnetics topology is conceptualized in two stages and with this harmonics distortion in the network is minimized to permissible IEEE-519 standard limits. This compensator is modeled, designed and simulated by a SimPowerSystems tool box in MATLAB platform and is tested for voltage regulation and power factor correction in power systems. The operating characteristics corresponding to steady state and dynamic operating conditions show an acceptable performance.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

Basic Performance Evaluation of the First Model of 4-Dimensional CT-Scanner

  • Mori, Shinichiro;Endo, Masahiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuzi;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.376-378
    • /
    • 2002
  • This work was carried out to evaluate the basic performances for 4D CT, which employed continuously rotating conebeam. The performances were evaluated with the same method as the conventional CT, because the standard method of evaluating 4D CT has not yet been established, and we think this result was helpful to establish it. 4D CT can give dynamic volume imaging data continuously and with high-speed. The results were isotropic except for the evaluation of distortion in which small distortions gradually appeared as coming off the center of phantom in longitudinal direction.

  • PDF

Optimum Design of a Micro-fluidic Oscillator (유체 진동자의 최적 설계)

  • 노유정;윤성기;김문언
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.22-30
    • /
    • 2004
  • A micro-fluidic oscillator is used to control a linear actuator in a dynamic microsystem. The pressure difference at its two output ports causes the linear actuator to move, and it is a standard of judging the performance of the oscillator. The performance can be improved by optimizing the geometry of the oscillator, which has to enable fluid jet to switch at low inlet velocity. For this, in this study the relationship between the pressure coefficient (difference) and geometric parameters is obtained through the analysis using the software FLUENT. From the results the optimized model that maximize the output pressure difference is obtained by using a cyclic coordinate method that is one of optimization methods. As a result not only the performance is improved, but also the working range is more widen.

Free vibration analysis of Reissner plates by mixed finite element

  • Eratli, Nihal;Akoz, A. Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.277-298
    • /
    • 2002
  • In this study, free vibration analysis of Reissner plates on Pasternak foundation is carried out by mixed finite element method based on the G$\hat{a}$teaux differential. New boundary conditions are established for plates on Pasternak foundation. This method is developed and applied to numerous problems by Ak$\ddot{o}$z and his co-workers. In dynamic analysis, the problem reduces to the solution of a standard eigenvalue problem and the mixed element is based upon a consistent mass matrix formulation. The element has four nodes and bending and torsional moments, transverse shear forces, rotations and displacements are the basic unknowns. The element performance is assessed by comparison with numerical examples known from literature. Validity limits of Kirchhoff plate theory is tested by dynamic analysis. Shear locking effects are tested as far as $h/2a=10^{-6}$ and it is observed that REC32 is free from shear locking.

Analysis on Ampacity of Overhead Transmission Lines Being Operated

  • Yan, Zhijie;Wang, Yanling;Liang, Likai
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1358-1371
    • /
    • 2017
  • Dynamic thermal rating (DTR) system is an effective method to improve the capacity of existing overhead line. According to the methodology based on CIGRE (International Council on Large Electric systems) standard, ampacity values under steady-state heating balance can be calculated from ambient environmental conditions. In this study, simulation analysis of relations between parameters and ampacity is described as functional dependence, which can provide an effective basis for the design and research of overhead transmission lines. The simulation of ampacity variation in different rating scales is described in this paper, which are determined from real-time meteorological data and conductor state parameters. To test the performance of DTR in different rating scales, capacity improvement and risk level are presented. And the experimental results show that the capacity of transmission line by using DTR has significant improvement, with low probability of risk. The information of this study has an important reference value to the operation management of power grid.

DTMOS Schmitt Trigger Logic Performance Validation Using Standard CMOS Process for EM Immunity Enhancement (범용 CMOS 공정을 사용한 DTMOS 슈미트 트리거 로직의 구현을 통한 EM Immunity 향상 검증)

  • Park, SangHyeok;Kim, SoYoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.917-925
    • /
    • 2016
  • Schmitt Trigger logic is a gate level design method to have hysteresis characteristics to improve noise immunity in digital circuits. Dynamic Threshold voltage MOS(DTMOS) Schmitt trigger circuits can improve noise immunity without adding additional transistors but by controlling substrate bias. The performance of DTMOS Schmitt trigger logic has not been verified yet in standard CMOS process through measurement. In this paper, DTMOS Schmitt trigger logic was implemented and verified using Magna $0.18{\mu}m$ MPW process. DTMOS Schmitt trigger buffer, inverter, NAND, NOR and simple digital logic circuits were made for our verification. Hysteresis characteristics, power consumption, and delay were measured and compared with common CMOS logic gates. EM Immunity enhancement was verified through Direct Power Injection(DPI) noise immunity test method. DTMOS Schmitt trigger logics fabricated using CMOS process showed a significantly improved EM Immunity in 10 M~1 GHz frequency range.

Static and Dynamic Analysis of Plate Structures using a High Performance Finite Element (고성능 유한요소를 이용한 평판구조물의 정적 및 동적해석)

  • Han In-Seon;Kim Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.311-320
    • /
    • 2005
  • In this paper an enhanced quadratic finite element for static and dynamic analysis of plate structures is presented. The performance of a proposed plate element is improved by the coupled use of non conforming displacement modes, the selective integration scheme, and the assumed shear strain fields. An efficient direct modification method is also applied to this element to solve the problem such as failure of the patch test due to the adoption of non conforming modes. The proposed quadratic finite element does not show any spurious mechanism and does not produce shear locking phenomena even with distorted meshes. It is shown that the results obtained by this element converged to analytical solutions very rapidly tough numerical tests for standard benchmark problems. It is also noted that this element is applicable to transient dynamic analysis of Mindlin plates.

A Study on the Estimation and Improvement of the Current Collection Performance for the Next Generation High-Speed Train (HEMU-430X) (차세대 고속철도의 집전성능 예측 및 향상 방안에 관한 연구)

  • Lee, Jin-Hee;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.429-435
    • /
    • 2012
  • The HEMU-430X is a world-class railway vehicle which aimed the maximum speed of 430km/h and the operation speed of 370km/h. To maintain high-speed operation condition over 300km/h, various requirements for satisfy exist. However, one of the most important things is a reliable supply of electricity. Especially, the dynamic interaction between the pantograph and overhead contact line at high-speed is a significant matter to pre-evaluate. In this paper, using the dynamic interaction analysis program, current collection performance of the HEMU-430X was investigated. Firstly, based on the international standard, performance of the original specifications was evaluated. In addition, through study on changes in tension and span length, improvement of the performance was considered.

Performance Analysis of the MAC protocol for the Broadband Wireless Access System (광대역 무선 접속 시스템의 MAC 프로토콜 성능분석)

  • Cho Kwang-Oh;Hwang You-Sun;Park Ae-Soon;Lee Jong-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.33-40
    • /
    • 2005
  • In this paper, we analyzed the DRMA(Dynamic Reservation Multiple Access) protocol with Rayleigh fading, shadowing, and capture effect for the Broadband fireless Access System. We consider the TDMA-based protocols, since these are based on the standard for IEEE 802.16 WMAN, IEEE 802.20 MBWA, and ETSI HIPERLAN//2. The results of analytical model will be apply the development of collision resolution algorithm, scheduling algorithm and the dynamic change of system parameters.