• Title/Summary/Keyword: Stand-alone operation

Search Result 115, Processing Time 0.029 seconds

Induction Generator Using PWM Converter and Its Small-Scale Power Applications to Variable-Speed Renewable-Energy Generation

  • Ahmed Tarek;Nishida Katsumi;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2005
  • This paper describes a simple control structure and power conditioning system for an indirect vector controlled stand-alone induction generator (IG) used to operate under variable speed. The required reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM converter size. The vector control structure for the variable speed IG power conditioning system compensates for changes in the electrical three-phase and DC loads while considering the magnetizing curve of the IG. The vector control structure is developed to regulate the DC link voltage of the PWM converter and the IG output voltage. The experimental and simulated performance results of the IG power conditioning system at various speeds and loads are given and show that this proposed scheme can be used efficiently for a variable speed, wind energy conversion system.

Single-Phase Utility-Interactive Inverter for Residential Fuel Cell Generation System (가정용 연료전지 발전 시스템을 위한 단상 계통연계형 인버터)

  • Jung, Sang-Min;Bae, Young-Sang;Yu, Tae-Sik;Kim, Hyo-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • In this paper, a new single-phase utility-interactive inverter system for residential power generation with fuel cell is proposed. The proposed inverter system is not only capable of working in both stand-alone and grid-connected mode, but also ensures smooth and automatic transfer between the two modes of operation. The proposed control method has little steady-state error and good transient response characteristic. Also, the control method can be implemented using low-cost, fixed point DSP since it has simpler structure, smaller amount of calculation, and smaller number of sensors. The controller for the proposed utility-interactive inverter system is described, and the validity is verified through simulation and experiment.

Rapid Electric Vehicle Charging System with Enhanced V2G Performance

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.201-202
    • /
    • 2012
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. Each mode is operated according to battery states: voltage, current and State of Charging (SOC). The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system. Experiment waveforms confirm the proposed functionality of the charging system.

  • PDF

A Novel Variable-Speed Renewable-Energy Generation System of Induction Generator and PWM Converter for Small-Scale Hybrid Power Applications

  • Ahmed, Tarek;Nishida, Katsumi;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1339-1342
    • /
    • 2005
  • This paper presents a simple AC-DC power conditioner for a squirell-cage induction generator(IG) operating under variable shaft speeds. The necessary reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM power converter size. A simple control compensating for changes in the electrical loads as well as the variation in speed was developed to regulate the voltages of the IG system by controlling the rotor flux through its reactive and active currents control implementation. This proposed power conditioning scheme can be used efficiently as a wind power generation system where the output voltage of the IG is maintained constant voltage despite the variable frequency and the DC bus voltage of the PWM converter can be used for either DC applications such as battery charging or AC power applications with 60/50 Hz by connecting a stand alone inverter. The experimental and simulated operating performance results of a 5 kW IG scheme at various speeds and leads are presented.

  • PDF

RAIM - A MODEL FOR IODINE BEHAVIOR IN CONTAINMENT UNDER SEVERE ACCIDENT CONDITION

  • KIM, HAN-CHUL;CHO, YEONG-HUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.827-837
    • /
    • 2015
  • Following a severe accident in a nuclear power plant, iodine is a major contributor to the potential health risks for the public. Because the amount of iodine released largely depends on its volatility, iodine's behavior in containment has been extensively studied in international programs such as International Source Term Programme-Experimental Program on Iodine Chemistry under Radiation (EPICUR), Organization for Economic Co-operation and Development (OECD)-Behaviour of Iodine Project, and OECD-Source Term Evaluation and Mitigation. Korea Institute of Nuclear Safety (KINS) has joined these programs and is developing a simplified, stand-alone iodine chemistry model, RAIM (Radio-Active Iodine chemistry Model), based on the IMOD methodology and other previous studies. This model deals with chemical reactions associated with the formation and destruction of iodine species and surface reactions in the containment atmosphere and the sump in a simple manner. RAIM was applied to a simulation of four EPICUR tests and one Radioiodine Test Facility test, which were carried out in aqueous or gaseous phases. After analysis, the results show a trend of underestimation of organic and molecular iodine for the gas-phase experiments, the opposite of that for the aqueous-phase ones, whereas the total amount of volatile iodine species agrees well between the experiment and the analysis result.

Development of nodal diffusion code RAST-V for Vodo-Vodyanoi Energetichesky reactor analysis

  • Jang, Jaerim;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3494-3515
    • /
    • 2022
  • This paper presents the development of a nodal diffusion code, RAST-V, and its verification and validation for VVER (vodo-vodyanoi energetichesky reactor) analysis. A VVER analytic solver has been implemented in an in-house nodal diffusion code, RAST-K. The new RAST-K version, RAST-V, uses the triangle-based polynomial expansion nodal method. The RAST-K code provides stand-alone and two-step computation modes for steady-state and transient calculations. An in-house lattice code (STREAM) with updated features for VVER analysis is also utilized in the two-step method for cross-section generation. To assess the calculation capability of the formulated analysis module, various verification and validation studies have been performed with Rostov-II, and X2 multicycles, Novovoronezh-4, and the Atomic Energy Research benchmarks. In comparing the multicycle operation, rod worth, and integrated temperature coefficients, RAST-V is found to agree with measurements with high accuracy which RMS differences of each cycle are within ±47 ppm in multicycle operations, and ±81 pcm of the rod worth of the X2 reactor. Transient calculations were also performed considering two different rod ejection scenarios. The accuracy of RAST-V was observed to be comparable to that of conventional nodal diffusion codes (DYN3D, BIPR8, and PARCS).

Development of an Informetric Analysis System KnowledgeMatrix (계량정보분석시스템 KnowledgeMatrix 개발)

  • Lee, Bangrae;Yeo, Woon Dong;Lee, June Young;Lee, Chang-Hoan;Kwon, Oh-Jin;Moon, Yeong-ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.167-171
    • /
    • 2007
  • Application areas of Knowledge Discovery in Database (KDD) have been expanded into many R&D management processes including technology trends analysis, forecasting and evaluation etc. Established research field such as informetrics (or scientometrics) has recently fully utilized techniques or methods of KDD. Various systems have been developed to support works of analyzing large-scale R&D related databases such as patent DB or bibliographic DB by a few researchers or institutions. But extant systems have some problems for korean users to use. Their prices is not cheap, korean language process not available, and user's demands not reflected. To solve these problems, Korea Institute of Science and Technology Information (KISTI) developed stand-alone type information analysis system named as KnowledgeMatrix. KnowledgeMatrix system offer various functions to analyze retrieved data set from databases. Knowledge Matrix main operation unit is composed of user-defined lists and matrix generation, cluster analysis, visualization, data pre-processing. KnowledgeMatrix show better performances and offer more various functions than extant systems.

  • PDF

Development of the KnowledgeMatrix as an Informetric Analysis System (계량정보분석시스템으로서의 KnowledgeMatrix 개발)

  • Lee, Bang-Rae;Yeo, Woon-Dong;Lee, June-Young;Lee, Chang-Hoan;Kwon, Oh-Jin;Moon, Yeong-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • Application areas of Knowledge Discovery in Database(KDD) have been expanded to many R&D management processes including technology trends analysis, forecasting and evaluation etc. Established research field such as informetrics (or scientometrics) has utilized techniques or methods of KDD. Various systems have been developed to support works of analyzing large-scale R&D related databases such as patent DB or bibliographic DB by a few researchers or institutions. But extant systems have some problems for korean users to use. Their prices is not moderate, korean language processing is impossible, and user's demands not reflected. To solve these problems, Korea Institute of Science and Technology Information(KISTI) developed stand-alone type information analysis system named as KnowledgeMatrix. KnowledgeMatrix system offer various functions to analyze retrieved data set from databases. KnowledgeMatrix's main operation unit is composed of user-defined lists and matrix generation, cluster analysis, visualization, data pre-processing. Matrix generation unit help extract information items which will be analyzed, and calculate occurrence, co-occurrence, proximity of the items. Cluster analysis unit enable matrix data to be clustered by hierarchical or non-hierarchical clustering methods and present tree-type structure of clustered data. Visualization unit offer various methods such as chart, FDP, strategic diagram and PFNet. Data pre-processing unit consists of data import editor, string editor, thesaurus editor, grouping method, field-refining methods and sub-dataset generation methods. KnowledgeMatrix show better performances and offer more various functions than extant systems.

OECD/NEA BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELING (UAM) FOR LWRS - SUMMARY AND DISCUSSION OF NEUTRONICS CASES (PHASE I)

  • Bratton, Ryan N.;Avramova, M.;Ivanov, K.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.313-342
    • /
    • 2014
  • A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for Uncertainty Analysis in Modeling (UAM) is defined in order to facilitate the development and validation of available uncertainty analysis and sensitivity analysis methods for best-estimate Light water Reactor (LWR) design and safety calculations. The benchmark has been named the OECD/NEA UAM-LWR benchmark, and has been divided into three phases each of which focuses on a different portion of the uncertainty propagation in LWR multi-physics and multi-scale analysis. Several different reactor cases are modeled at various phases of a reactor calculation. This paper discusses Phase I, known as the "Neutronics Phase", which is devoted mostly to the propagation of nuclear data (cross-section) uncertainty throughout steady-state stand-alone neutronics core calculations. Three reactor systems (for which design, operation and measured data are available) are rigorously studied in this benchmark: Peach Bottom Unit 2 BWR, Three Mile Island Unit 1 PWR, and VVER-1000 Kozloduy-6/Kalinin-3. Additional measured data is analyzed such as the KRITZ LEU criticality experiments and the SNEAK-7A and 7B experiments of the Karlsruhe Fast Critical Facility. Analyzed results include the top five neutron-nuclide reactions, which contribute the most to the prediction uncertainty in keff, as well as the uncertainty in key parameters of neutronics analysis such as microscopic and macroscopic cross-sections, six-group decay constants, assembly discontinuity factors, and axial and radial core power distributions. Conclusions are drawn regarding where further studies should be done to reduce uncertainties in key nuclide reaction uncertainties (i.e.: $^{238}U$ radiative capture and inelastic scattering (n, n') as well as the average number of neutrons released per fission event of $^{239}Pu$).

Structural Analysis for Design of Anchor Straps for a Large-Scale LNG Storage Tank with Corner Protection and Inner Tank (코너프로텍션과 내조를 고려한 대용량 LNG 저장탱크 앵커스트랩의 구조설계를 위한 유한요소해석)

  • Jin, Chengzhu;Ha, Sung-Kyu;Kim, Seong-Jong;Lee, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1543-1548
    • /
    • 2011
  • Structural analysis is performed to design anchor straps for a large-scale-liquefied-natural-gas (LNG) storage tank with corner protection and an inner tank by considering structural integrity. Anchor straps made of 9% nickel steel are attached to the inner tank, corner protection, and concrete raft to prevent the failure of the inner tank during both normal and emergency operating conditions. Two finite element (FE) models were analyzed in this study. One is a stand-alone model of the anchor strap, while the other is an extended model of the substructure of the anchor strap, inner tank, and corner protection. Three-dimensional shell elements are used to effectively assess the bending and axial behavior of structures. The Tresca stress values in each part of the two models are calculated for operation under five different load-condition cases: normal operation, leakage of the LNG, hydro test, and two earthquake conditions.