DOI QR코드

DOI QR Code

Development of nodal diffusion code RAST-V for Vodo-Vodyanoi Energetichesky reactor analysis

  • Jang, Jaerim (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Dzianisau, Siarhei (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Deokjung (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2021.08.10
  • Accepted : 2022.04.09
  • Published : 2022.09.25

Abstract

This paper presents the development of a nodal diffusion code, RAST-V, and its verification and validation for VVER (vodo-vodyanoi energetichesky reactor) analysis. A VVER analytic solver has been implemented in an in-house nodal diffusion code, RAST-K. The new RAST-K version, RAST-V, uses the triangle-based polynomial expansion nodal method. The RAST-K code provides stand-alone and two-step computation modes for steady-state and transient calculations. An in-house lattice code (STREAM) with updated features for VVER analysis is also utilized in the two-step method for cross-section generation. To assess the calculation capability of the formulated analysis module, various verification and validation studies have been performed with Rostov-II, and X2 multicycles, Novovoronezh-4, and the Atomic Energy Research benchmarks. In comparing the multicycle operation, rod worth, and integrated temperature coefficients, RAST-V is found to agree with measurements with high accuracy which RMS differences of each cycle are within ±47 ppm in multicycle operations, and ±81 pcm of the rod worth of the X2 reactor. Transient calculations were also performed considering two different rod ejection scenarios. The accuracy of RAST-V was observed to be comparable to that of conventional nodal diffusion codes (DYN3D, BIPR8, and PARCS).

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No.NRF-2017M2A8A2018595)

References

  1. J. Park, J. Jang, H. Kim, J. Choe, D. Yun, P. Zhang, A. Cherezov, D. Lee, RAST-K v2-Three-dimensional nodal diffusion code for pressurized water reactor core analysis, Energies 13 (2020) 6324, https://doi.org/10.3390/en13236324.
  2. J. Choe, S. Choi, P. Zhang, J. Park, W. Kim, H.C. Shin, H.S. Lee, J. Jung, D. Lee, Verification and validation of STREAM/RAST-K for PWR analysis, Nucl. Eng. Technol. 51 (2) (2019) 356-368, https://doi.org/10.1016/j.net.2018.10.004.
  3. J.Y. Cho, C.H. Kim, Development of a Polynomial Expansion Nodal Method for Hexagonal Geometry, Theses of Ph.D., Seoul National University, 1995 https://s-space.snu.ac.kr/handle/10371/51486.
  4. J. Jang, T.T. Quoc, S. Dzianisau, W. Lee, D. Lee, Verification of RAST-K hexagonal analysis module with SNR and VVER-440 benchmarks, KNS Winter Meeting (Dec 16-18, 2020). Korea (online).
  5. J. Jang, A. Chezerov, Y. Jo, T.T. Quoc, S. Dzianisau, W. Lee, J. Park, D. Lee, Verification of RAST-K hexagonal transient solver with OCED/NEA benchmark problem of KALININ-3 NPP, KNS Winter Meeting (Dec 16-18, 2020). Korea (online).
  6. M. Avramova, K. Ivanov, K. Velkov, S. Nikonov, P. Gordienko, B. Shumskiy, O. Kavun, Benchmark on Reactivity Compensation of Boron Dilution by Stepwise Insertion of Control Rod Cluster into the VVER-1000 Core, Version 1.5, OECD Nuclear Energy Agency, March 2020.
  7. Y. Bilodid, E. Fridman, T. Lotsch, X2 VVER-1000 benchmark revision: fresh HZP core state and the reference Monte Carlo solution, Ann. Nucl. Energy 144 (2020), https://doi.org/10.1016/j.anucene.2020.107558.
  8. T. Lotsch, V. Khalimonchuk, A. Kuchin, Corrections and Additions to the Proposal of a Benchmark for Core Burnup Calculations for a Vver-1000 Reactor, 19th AER Symposium, 2010.
  9. T. Lotsch, S. Kliem, E. Bilodid, V. Khalimonchuk, A. Kuchin, Y. Ovdienko, M. Ieremenko, R. Blank, G. Schultz, The x2 benchmark for vver-1000 reactor calculations results and status, in: Novel Vision of Scientific & Technical Support for Regulation of Nuclear Energy Safety: Competence, Transparency, Responsibility, Dedicated to the 25th Anniversary of the SSTC NRS Kiev, Ukraine, March 22-23, 2017.
  10. A. Kereszturi, M. Telbisz, AER Benchmark Specification Sheet AER-DYN-001, AER Benchmark Book, Forschungszentrum Rossendorf, Institute of Safety Research, Dresden, Germany, Oct. 10, 1999.
  11. U. Grundmann, AER Benchmark Specification Sheet AER-DYN-002, AER Benchmark Book, Forschungszentrum Rossendorf, Institute of Safety Research, Dresden, Germany, Oct. 10, 1999.
  12. L. Markova, Simplified benchmark specification based on #2670 ISTC VVER PIE, in: 12th Meeting of AER, Slovakia, April 16-18, 2007.
  13. The VVER Today, ROSATOM, Retrieved May 31, 2018, https://rosatom.ru/upload/iblock/0be/0be1220af25741375138-cd1afb18743.pdf.
  14. Current Status of Russian Nuclear Power Development and Cooperation with Europe: the Issue of Human Resource Development Rosatom Technical Academy, https://enen.eu/wp-content/uploads/2019/08/13-artisiuk_01_03_18_brussel.pdf.
  15. Russian Nuclear Power, 2018. Bellona, P17, https://network.bellona.org/content/uploads/sites/2/2018/08/Russian-Nuclear-Power-2018.pdf.
  16. F.P. Weiss, S. Mittag, Validation of coupled neutron-kinetic/thermal-hydraulic codes against transients measured in VVER reactors, in: Phare SRR-1/95: Final Technical Report FZR/SRR195/FIN2.1, 2000. Brussels, Belgium.
  17. S. Mittag, U. Grundmann, et al., Validation of Coupled Neutronic/ThermalHydraulic Codes for VVER Reactors Final Report (FZR-408), 2004. Germany.
  18. AER Benchmark Book, Atomic Energy Research (AER), 1999. Budapest, http://aerbench.kfki.hu.
  19. T. Apostolov, B. Petrov, Operational: Benchmark for VVER-1000, UNIT 5, KOZLODUY NPP, Ninth Symposium of Atomic Energy Research, 1999.
  20. G. Hegyi, A. Kereszturi, I. Trosztel, Z. Elter, ATHLET/KIKO3D results of the OECD/NEA benchmark for coupled codes on KALININ-3 NPP measured data, NENE, Slovenia (September 8-11, 2014).
  21. Benchmark for Uncertainty Analysis in Modelling (UAM) for Design, Operation and Safety Analysis of LWRs, Volume I: Specification and Support Data for the Neutronics Cases (Phase I), NEA/NSC/DOC (2012) 10, 2012.
  22. AER Benchmark Book, Atomic Energy Research (AER), 1999. Budapest.
  23. A. Carreno, A. Vidal-Ferrandiz, D. Ginestar, G. Verdu, Adaptive Time-step Control for Modal Methods to Integrate the Neutron Diffusion Equation.
  24. T. Downar, Y. Xu, V. Seker, N. Hudson, PARCS NRC - v3.3.1 Volume I: Input Manual, June, 2018.
  25. K. Obaidurrahman, J. Doshi, R. Jain, V. Jagannathan, Development and validation of coupled dynamics code 'trikin' for VVER reactors, Nucl. Eng. Technol. 42 (3) (2010) 259-270. https://doi.org/10.5516/NET.2010.42.3.259
  26. M.B. Chadwick, et al., ENDF/B-VII.0: Next-generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets 107 (12) (2006) 2931-3060, https://doi.org/10.1016/j.nds.2006.11.001.
  27. J.Y. Cho, C.H. Kim, Higher-order polynominal expansion nodal method for hexagonal core neutronics analysis, Ann. Nucl. Energy 25 (13) (1998) 1021-1031. https://doi.org/10.1016/S0306-4549(97)00101-1
  28. T. Downar, Y. Xu, V. Seker, PARCS v3.0 U.S. NRC Core Neutronics Simulator Theory Manual, Department of Nuclear Engineering and Radiological Sciences University of Michigan.
  29. H.A. Van Der Vorst, BI-CGSTAB: a fast and smoothly converging variant of BICG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 13 (1992) 631-644. https://doi.org/10.1137/0913035
  30. J. Koyama, M. Aoyaama, Nodal expansion method for solution of diffusion equation in hexagonal geometry, J. Nucl. Sci. Technol. 26 (6) (1989) 636-638, https://doi.org/10.1080/18811248.1989.9734358.
  31. K.B. Park, H.G. Joo, Source expansion nodal method for hexagonal geometry applications, in: Proceedings of the Reactor Physics Asia 2015 (RPHA15) Conference, Jeju, Korea, Sept. 16-18, 2015.
  32. N.Z. Cho, J.M. Noh, Analytic function expansion nodal method for hexagonal geometry, Nucl. Sci. Eng. 121 (1995) 245. https://doi.org/10.13182/NSE95-A28561
  33. Non-linear Triangle-Based Polynomial Expansion Nodal Method for Hexagonal Core Analysis, KAERI/TR-1652/2000, Korea Atomic Energy Research Institute, 2000.
  34. Benchmark for Neutronic Analysis of Sodium-Cooled Fast Reactor Cores with Various Fuel Types and Core Sizes, Nuclear Science, OECD/NEA, NEA/NSC/R(2015)9, February 2016. https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/nsc-r2015-9.pdf.
  35. V.A. Tereshonok, S.P. Nikonov, M.P. Lizorkin, K. Velkov, A. Pautz, K. Ivanov, Kalinin-3 Coolant Transient Benchmark Switching-Off of One of the Four Operating Main Circulation Pumps at Normal Reactor Power, NEA/NSC/DOC, 2009, p. 5.
  36. G. Hegyi, A. Kereszturi, I. Trosztel, Z. Elter, A THLET/KIKO3D results of the OECD/NEA benchmark for coupled codes on KALININ-3 NPP measured data, in: A. Kereszturi, I. Trosztel, Zs. Elter, Gy, NENE 2014, Slovenia, September 8-11, 2014.
  37. S. Choi, C. Lee, D. Lee, Resonance treatment using pin-based pointwise energy slowing-down method, J. Comput. Phys. 330 (2017) 134-155, https://doi.org/10.1016/j.jcp.2016.11.007.
  38. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150, https://doi.org/10.1016/j.anucene.2014.08.024.
  39. J. Jang, B. Ebiwonjumi, W. Kim, J. Park, J. Choe, D. Lee, Validation of spent nuclear fuel decay heat calculation by a two-step method, Nucl. Eng. Technol. 53 (1) (2020) 44-60, https://doi.org/10.1016/j.net.2020.06.028.
  40. Studsvik, CASMO5 PWR Methods and Validation Report, SSP-14-P01/012-R Rev. 1, 2015. https://www.nrc.gov/docs/ML1535/ML15355A290.pdf.
  41. N. Soppera, M. Bossant, E. Dupont, JANIS 4: an improved version of the NEA Java-based nuclear data information system, Nucl. Data Sheets 120 (2014) 294-296. https://doi.org/10.1016/j.nds.2014.07.071
  42. M.B. Chadwick, et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011) 2887-2996, https://doi.org/10.1016/j.nds.2011.11.002.
  43. J. Jang, B. Ebiwonjumi, W. Kim, J. Park, D. Lee, Verification and validation of isotope inventory prediction for back-end cycle management by two-step method, Nucl. Eng. Technol. 57 (3) (2021) 2105-2125, https://doi.org/10.1016/j.net.2021.01.009.
  44. T. Bahadir, Improved PWR radial reflector modeling with simulate5, in: Advances in Nuclear Fuel Management V (ANFM 2015), Hilton Head Island, South Carolina, USA, on CD-ROM, American Nuclear Society, LaGrange Park, IL, 2015. March 29-April 1, 2015.
  45. S.A. Ki, Usheva, A.A. Kuten, L.F. Khruschinsky, Babichev, Generation of XS library for the reflector of VVER reactor core using Monte Carlo code Serpent, IOP Conf. Series: Journal of Physics: Conf. Series 781 (2017), 012029, https://doi.org/10.1088/1742-6596/781/1/012029.
  46. P.I.O. Pessoa, L.M. Araujo, F.C. Silva, A.A.M. Menezes, Numerical methods applied to pin power reconstruction based on coarse-mesh nodal calculation, Ann. Nucl. Energy 118 (2018) 291-312, https://doi.org/10.1016/j.anucene.2018.04.010.
  47. S. Choi, C. Lee, D. Lee, Resonance treatment using pin-based pointwise energy slowing-down method, J. Comput. Phys. 330 (2017) 134-155, https://doi.org/10.1016/j.jcp.2016.11.007.
  48. Pre-Operational Inspection Report of Shin-Kori Nuclear Power Plant Unit 3 (Initial Fuel Load and Startup Test, Vol. 2, Korea Institute of Nuclear Safety, 2016. KINS/AR-1008, https://nsic.nssc.go.kr/dta/reguResultView.do?seq=882.
  49. R. Ferrer, J. Hykes, J. Rhodes, Development of CASMO5 for VVER-1000/1200 Analysis and Preliminary Validation Using Critical Experiments, 2019, https://doi.org/10.3139/124.190006.
  50. T. Lotsch, V. Khalimonchuk, A. Kuchin, Proposal of a Benchmark for Core Burnup Calculations for a VVER-1000 Reactor Core, Novel Vision of Scientific & Technical Support for Regulation of Nuclear Energy Safety, 2017. Kyiv, Ukraine, https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/035/41035568.pdf.
  51. VVER-specific Features Regarding Core Degradation, NEA/CSNI/R(98)20, September, 1998. https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/csni-r98-20.pdf.
  52. V. Onufriev, Design and Fabrication of Nuclear Fuel for WWER and RBMK Reactors, Workshop on Modelling and Quality Control for Advanced and Innovative Fuel Technologies, 14-25 November 2005, The Abdu Salam International Centre for Theoretical Physics, Trieste, Italy, https://indico.ictp.it/event/a04215/session/26/contribution/16/material/0/1.pdf.
  53. [Online] The Power Reactor Information System (PRIS), IAEA, https://pris.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=453.
  54. P. Balestra, C. Parisi, A. Alfonsi, C. Rabiti, Simulation of AER-DYN-002 and AERDYN-003 Control Rod Ejection Benchmarks by RELAP5-3D/PHISICS Coupled Codes, Nuclear Technology, 193:1, 175-182, https://doi.org/10.13182/NT14-138.
  55. A. Ranta-aho, Validation of depletion codes against VVER-440 spent fuel data, NEA/NSC/DOC(2006), in: 31, the Need for Post Irradiation Experiments to Validate Fuel Depletion Calculation Methodologies Workshop Proceedings, Czech Republic, May 11-12, 2006, https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=NEA/NSC/DOC(2006)31&docLanguage=En.