• Title/Summary/Keyword: Stamping die

Search Result 154, Processing Time 0.028 seconds

Experimental Study on the Frictional Constraint of Draw Bead (드로오 비드의 마찰구속에 관한 실험적 연구)

  • 김영석;장래웅;최원집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.658-666
    • /
    • 1992
  • In developing computer-aided design technology for optimization of stamping die design, it has been an important issue to treat the frictional constraint acting on the blank holder surface. The main goal of this work is to establish database of draw bead restraint force and clarify friction characteristic for various automotive sheet steels, which is essential in developing friction algorithm that can be used for CAD of stamping die design. Draw bead friction tester is used to evaluate the various parameters that affect the draw restraint force and the coefficient of friction for the cold rolled and the coated sheet steels such as drawing rate, lubricant type, surface property of material, etc.

The Die Development of REF SILL OTR-R/L Auto-Body Panel by using Forming Analysis (성형해석을 통한 REF SILL OTR-R/L 차체판넬 금형개발)

  • Jung, D.W.;Lee, C.H.;Moon, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.81-85
    • /
    • 2006
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. Among Finite element method, The static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

Simulation-based Multi-stage Tool Design for an Electronic part with Ferritic Stainless Steel Sheet (400계 스테인리스 판재의 가전 부품 적용을 위한 전산해석 기반 다단 금형설계)

  • Park, K.D.;Jang, J.H.;Kim, S.H.;Kim, K.P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.174-177
    • /
    • 2008
  • This paper replaces an conventional 300-austenitic stainless steel sheet to a 400-ferritic stainless steel for the cost reduction of a pulsator cover of a washing machine. However, ferritic stainless steel has poor formability in comparison with austenitic one. The low formability of ferritic steel results in problems during stamping such as fracture, wrinkling, shape inaccuracy and so on. Design modification of the stamping tool is carried out with the aid of the finite element analysis for multi-stage stamping process. The simulation results show that fracture occurs on top of the product while wrinkles are generated by the excess metal near the wing part. Modification of the initial stamping die is performed to improve metal flow and to eliminate problems during the stamping process. Simulation with the modified design fully demonstrates that safe forming is possible without inferiorities.

  • PDF

Effect of Cold Forming Method on Drawability Trunk Floor Panel (냉각성형공법이 트렁크 플로어 드로잉성에 미치는 영향)

  • 최치수;최이천;오영근;이정우;이항수
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • This study is to investigate the effects of cold forming method with steel sheet of SCP3C to improve continuous productivity. Experiments were carried out in various working conditions, such as the number of stamping and the punch temperature. The effects of the punch temperature and the number of stamping on drawability of steel sheet of SCP3C as well as clearance and draw-in in the number of stamping were examined and discussed. More improvement of continuous productivity in case of cold stamping rather than by conventional stamping at room temperature is obtained. The optimum forming condition for drawing trunk floor panel of SCP3C is shown as the punch is cooled by coolant of $-5^{\circ}C$ and at the same time both the die and the blankholder are heated by stamping and frictional heat.

  • PDF

Simulation of Stamping of an Automotive Panel using a Finite Element Method (유한요소법을 이용한 자동차 패널의 성형 해석)

  • 이종길;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.76-79
    • /
    • 1997
  • In this study, an elasto-plastic finite element code, ESFORM, was developed to analyze sheet stamping processes. A formulation of 4-node degenerated shell element was implemented in the code. Workpiece materials were assumed to have planar anisotropy, and governed by associated flow rule. Explicit time integration method was employed to save computation time and reduce the required computer memory. Penalty method was used to describe interface behavior between workpiece and rigid die. Deep drawing of square cup and front finder stamping processes were simulated by ESFORM>

  • PDF

A Study of Tool Planning for Forming Analysis in REF SILL OTR-R/L Auto-Body Panel Stamping Process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Ko Hyung-Hoon;Ahn Hyun-Gil;Lee Chan-H;Ahn Byung-Il;Moon Won-Sub;Jung Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.118-124
    • /
    • 2006
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excel lent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behavior. Among Finite element method, the static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focused on the drawing ability factors on auto-body panel stamping by AUTOFORM with using tool planning alloy to reduce law price as well as high precision front Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

Study on the Characteristics of Drawbead Forces in Automotive Stamping Dies (자동차 스템핑 금형의 드로우비드력 특성에 관한 연구)

  • Moon, S.J.;Wagoner, R.H.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.457-462
    • /
    • 2007
  • The drawbeads, which are used for controlling the flow of the sheet into die cavity by imposing the tension and for preventing the forming defects like wrinkling, springback, etc. during the sheet forming process, affect the formability strongly because of the differences in the restraint and opening forces according to the drawbead shapes and dimensions. In this study, the experimental device enabling to measure the drawbead restraining and opening forces is manufactured and the drawing forces of circular, square, and step drawbeads are measured. The drawbead restraining and opening forces of a circular drawbead are increased as its drawbead height is increased. Similarly, those of a square drawbead are increased as its height is increased and shoulder radii decreased. The drawbead forces obtained from the experiment were compared with those calculated in the numerical simulation of stamping process of automotive fender. Good agreement was found so that the experimental measurements can be used in the simulation of auto-body stamping process.

Automatic Tool Compensation for an UHSS Automotive Component Using a Compensation Module (금형보정 모듈을 이용한 초고강도강 자동차부품용 프레스금형의 자동보정)

  • Lee, J.H.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.109-115
    • /
    • 2016
  • In the current study, automatic tool compensation is accomplished by using a finite element stamping analysis for a center roof rail made of UHSS in order to satisfy the specifications for shape accuracy. The initial blank shape is calculated from a finite element inverse analysis and potential forming defects such as tearing and wrinkling are determined by the finite element stamping analysis based on the initial tool shape. The blank shape is optimized to meet the shape requirements of the final product with the stamping analysis, and die compensation is determined with the information about springback. The specifications for shape accuracy were successfully achieved by the proposed die compensation scheme using the finite element stamping analysis. The current study demonstrates that the compensation tendency is similar when the proposed scheme is used or when the compensation is performed by trial and error in the press-shop. This similarity verifies that the automatic compensation scheme can be used effectively in the first stage of tool design especially for components made from UHSS.

A Study On the Combined One Body Stamping Using F.E.A. (유한요소해석을 이용한 일체복합성형성에 대한 연구)

  • Kwon S. Y.;Lee J. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.171-175
    • /
    • 2005
  • Automotive parts manufacturers are doing their best to strengthen the competitiveness. They are developing a large variety of new manufacturing technologies to reduce the manufacturing cost. Combined One Body Stamping(C.O.B.S) is one of the remarkable technologies to reduce production cost. C.O.B.S makes possible to form several parts together in a process using only one die set while conventional stamping demands the same number of die sets to the number of parts. But the deformation mechanism in C.O.B.S is more complicated because the interactions between blanks. So the interaction effects should be considered in the stage of initial blank shape design. In the study, a blank design method to consider the interactions between blanks was proposed and verified through the simulations and experiments. A commercial incremental FE code, LS-Dyna, was used to simulate the C.O.B.S Process. And a reverse one step FE code, Hyper Form, was used to predict initial blank shape. The boundary conditions of the reverse one step FE analysis were determined by the proposed method.

  • PDF

A CAD/EAM System and Component Technology in Die Making for Automobile (자동차용 금형제작의 CAD/DAM 시스템 및 요소기술)

  • 한규택
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.119-124
    • /
    • 1997
  • This study investigates EAD/EAM system & component technology in die making for automobile, An assessment has been proceeded so that stamping car panel can be designed and manufactured efficiently. Also a method of measuring surface strains in a deformed three dimensional part has been analyzed which computes surface strains for the entire area under the view instead of determining surface strains from deformed circles one a time. For the technicians sutomated strain measurement system has the potential to become a powerful tool for successful press-die design and making. The obtained results will lead to the reductions in lead time and man-hour required for the design and manufacture of the stamping dies.

  • PDF