• Title/Summary/Keyword: Stamping die

Search Result 154, Processing Time 0.03 seconds

Development of an Automated System for Predicting Shape and Volume of Air Pocket on the Draw Die (드로우 금형의 에어 포켓 형상 및 체적예측 자동화 시스템 개발)

  • Jung, Sung-Yuen;Hwang, Se-Joon;Park, Warn-Gyu;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.72-78
    • /
    • 2008
  • Metal stamping is widely used in the mass-production process of the automobile. During the stamping process, air may be trapped between the draw die and the panel and/or between the punch and the panel. Air pocket rapidly not only increases forming load in the final stage, but also deforms the product just formed by compressive air inside the air pocket in knockout process. To prevent these problems air bent holes are drilled in the die to exhaust the trapped air but all processes associated with air bent holes are performed by empirical know-how of workers in the field due to lack of researches. Therefore this study developed an automated design system for predicting the shape and position, and volume of air pocket on the draw die by using the AutoLISP language under AutoCAD circumstance. The system is able to display the shape of air pocket occurred in the draw die and to calculate automatically its volume by strokes. So it makes a stepping stone to calculate theoretical size of an air bent hole and numbers according to it by predicting and analyzing the position and volume of air pocket. Results obtained from the system enable the designers or manufacturers of the stamping die to be more efficient in this field.

Design of Strip Bridge for Unsymmetrical Progressive Stamping for an Automotive Seat Side Cushion Pane (자동차 시트 사이드 쿠션 패널의 비대칭 프로그레시브 스탬핑 성형을 위한 스트립 브릿지 설계)

  • Hong, S.;Joung, C. S.;Choi, B. S.;Lee, D. Y.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.400-404
    • /
    • 2015
  • For mass production of stamped parts, which require complicated in-press operations, it is always advisable to use a progressive die set. It is difficult to choose a progressive die set if the stamped parts need to be deep drawn and especially if they are unsymmetrical. Because unsymmetrical deep drawing parts are very sensitive to the effect of weight during moving to the next step, they are hard to exactly locate on the die face. An automotive seat side cushion panel is about 80mm high, unsymmetrical and its low edge needs hemming, so it is hard to produce even using a progressive die set. In the current paper a progressive stamping for seat side cushion panel was examined. Five strip bridges were considered to be strong enough to move to the next die as predicted by the CAE analysis.

A Study on the Process Optimization by a Beadless Stamping (노비드스탬핑 공법을 이용한 공정최적화에 관한 연구)

  • Kim, S.H.;Shim, H.B.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.485-492
    • /
    • 2012
  • As the shape of stamped part is complicated and as the trend toward light weight continues, the higher level of difficulty is required in making stamping die because of inevitably poor formability. The poor formability can be improved if the material flow during the stamping is carefully controlled. Application of drawbead became commonsense used to retard metal flow of blank into the die cavity at the region where wrinkle is expected. In the study, the concept of beadless stamping process is proposed and the method how to realize the beadless stamping process is presented. The validity of the proposed method is confirmed by the application of the real auto part.

A Study on the Applying CAD of Springback Revision Value by Design Analysis (설계해석에 의한 SPRINGBACK 보정값 CAD 적용에 관한 연구)

  • Lee J. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.312-317
    • /
    • 2005
  • In this study, using the stamping, analysis program, PAM STAMP, applied to the drawing result of springback analysis and draw analysis with applying on the best design planning as many times simulations from the initial stage of the die developing of automotive panels. Especially, after inspecting the design method with stamping analysis and springback analysis, write about the die development examples, using CADCEUS which is the software revising the amount of springback.

  • PDF

Binder Wrap Analysis considering Gravity, Contact and Friction (접촉과 마찰을 고려한 바인더 랩의 유한 요소 해석)

  • 유동진;이종민;전기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.87-95
    • /
    • 1996
  • The stamping process consists of two stages : First, the blank is held by the blank holder and then it is further formed into the die cavity by punch stroke. In actual stamping process, the accurate prediction of binder wrap is an indispensable step in sheet metal forming analysis because the initial plastic buckling induced by improper die design is directly related with fatal defect at the final stage. In the present work, an approach including the gravity effect of blank material and proper consideration of contact and friction is proposed. Computations are carried out for some actual auto-body parts using 3D FEM code to investigate the validity of the proposed methodology. Comparisons with experimental results show that the suggested scheme can be effectively applied to the precise prediction of binder wrap for arbitrarily curved die faces in which gravity and contact effect must be taken into account.

Addendum Surface Modeling in Draw Die Design for Stamping Automotive Panels (자동차 프레스 패널 성형을 위한 드로 금형의 어덴덤 곡면 모델링)

  • Chung, Yunchan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1018-1024
    • /
    • 2013
  • In the process of draw die design for stamping automotive press panels, the addendum surfaces generated in metal forming simulation software cannot be used in downstream processes such as machining and making draw dies because simulation tools use simple discrete models for the surface geometry. The downstream processes require more precise and continuous geometric models such as NURBS surfaces. Generally, automotive die engineers manually regenerate the addendum surface geometry using the discrete model. This paper presents an automated geometric modeling process for generating addendum surfaces using draft surface models. The design parameters of the section curve for the addendum surfaces are extracted automatically from the draft geometry. Using the extracted design parameters, smooth addendum surfaces are generated automatically as NURBS surfaces. The generated surfaces are $G^1$ continuous with the part surface and the binder surface, and can be used in downstream processes.

Development of a Reverse Engineering System for Stamping Die Manufacturing (자동차 금형 Reverse Engineering 을 위한 측정 및 분석 시스템 개발)

  • 김덕영;노상도;한형상;주영관;박진수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.277-280
    • /
    • 2000
  • Reverse Engineering is a procedure where the results of engineering decisions in manufacturing is feedback to the design phase and the knowledge-base is generated from the process know-how to reduce the errors. Since it used to take lots of time and efforts to finalize the machining of dies out of the original CAD design especially for die spotting and try-outs, reverse engineering is important to improve the productivity and quality of the die manufacturing process. In this regard, we developed system to support reverse engineering in machining of stamping dies for auto-body production. They automatically generate the relevant MC programs for a CMM simply with the input of measuring points in CAD environments, and show the CAD model and the results of inspection simultaneously for the ease of comparison. They also help reduce the overall clearance between the lower and upper dies. Applying these systems to the machining process of stamping dies, we could improve the reliability of measuring and get the optimal compensation distance between the two dies. We also analyzed the expected benefits of the system in terms of savings in time and costs.

  • PDF

A Study of selecting material for forming analysis in REF SILL OTR-R/L Auto-Body Panel stamping process (REF SILL OTR-R/L 차체판넬 스템핑공정에서 성형해석을 통한 재질선택에 관한 연구)

  • 황재신;정동원;안병일;문원섭;박영근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1410-1413
    • /
    • 2004
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate tool model is required. Due to the geometrical complexity of real-size part stamping tools it is hard to make FE model for real-size auto-body stamping parts. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planning alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

A Study of Selecting Material for Forming Analysis in Auto-Body Panel Stamping Process (차체판넬 스템핑공정에서 성형해석을 통한 재질선택에 관한 연구)

  • Hwang Jae Sin;Moon Won Sub;Lee Chan Ho;You Ho Young;Jung Dong Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.484-494
    • /
    • 2005
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate tool model is required. Due to the geometrical complexity of real-size part stamping tools it is hard to make FE model for real-size auto-body stamping parts. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

A Study of tool planning for forming analysis in REE SILL OTR-R/L Auto-Body Panel stamping process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Hwang J. S.;Jung D. W.;Ahn B. I.;Mun W. S.;Park Y. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.138-141
    • /
    • 2004
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate tool model is required. Due to the geometrical complexity of real-size part stamping tools it is hard to make FE model for real-size auto-body stamping parts. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF