• 제목/요약/키워드: Stamping Tool

검색결과 84건 처리시간 0.02초

평면이방성 박판성형공정의 3차원 유한요소해석 (3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal)

  • 이승열;금영탁;박진무
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

성형해석을 통한 REF SILL OTR-R/L 차체판넬 금형개발 (The Die Development of REF SILL OTR-R/L Auto-Body Panel by using Forming Analysis)

  • 정동원;이찬호;문원섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.81-85
    • /
    • 2006
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. Among Finite element method, The static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

자동차용 부재 금형설계의 공정변수 결정을 위한 CAE 프로세스 적용 (Application of the CAE Process to the Parameter Determination far the Tool Design of an Auto-body Member)

  • 김세호;허훈;송정한
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.64-73
    • /
    • 2005
  • This paper is concerned with the simulation-based parameter determination for the tool design in the stamping process of the complicated auto-body member. The CAE procedure of the stamping process is proposed so that troubles such as wrinkle, springback and excess metal be eliminated with changing parameters such as the blank size, the restraining force of the draw-bead and the embossing shape in the die face. The selected indicators of failure during forming are wrinkling. the amount of spring after unloading of the tool, the amount of excess metal developed .The proposed analysis scheme is applied to the tool and process parameter design for the front side member of a RV car. The simulation results show that the scheme can produce sound product from the viewpoint of thickness distribution, the contact condition between tools and the blank, the shape accuracy and so on.

시뮬레이션 설계공법의 최적화 (Optimization of Design Planning with Tool Simulation)

  • 이종문;박인천;김영주
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.305-311
    • /
    • 2005
  • The die development of the high-strength steel sheet has big difference on the formability compared with the general panels. Especially, the springback after stamping of the high-strength steel sheets shows big problem. In this study, for the die development of the high-strength steel sheets, write about examples reducing the lead time and the expense of the die development after CAD modification with the result of the springback analysis after finding the best design planning as several times stamping analysis.

  • PDF

자동차용 금형제작의 CAD/DAM 시스템 및 요소기술 (A CAD/EAM System and Component Technology in Die Making for Automobile)

  • 한규택
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.119-124
    • /
    • 1997
  • This study investigates EAD/EAM system & component technology in die making for automobile, An assessment has been proceeded so that stamping car panel can be designed and manufactured efficiently. Also a method of measuring surface strains in a deformed three dimensional part has been analyzed which computes surface strains for the entire area under the view instead of determining surface strains from deformed circles one a time. For the technicians sutomated strain measurement system has the potential to become a powerful tool for successful press-die design and making. The obtained results will lead to the reductions in lead time and man-hour required for the design and manufacture of the stamping dies.

  • PDF

굽힘 에너지가 보강된 박막 요소와 연속 접촉 처리를 이용한 스탬핑 공정의 단면 해석 (Sectional Analysis of Sheet Metal Stamping Processes Using Bending Energy Augmented Membrane Element and Continuous Contact Treatment)

  • 윤정환;김종봉;양동열;유동진;한수식
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.58-67
    • /
    • 1998
  • A sectional analysis of sheet metal forming process with an arbitrary tool shape is proposed in the present work. To improve the numerical convergence in the conventional membrane sectional analysis, the Bending Energy Augmented Membrane (BEAM) elements had been developed. The BEAM elements particularly improve the stability and convergence of the finite element method for the case of deep drawing. In this work, the FERGUBON spline (C$^2$-continuous) was used to fit the deformed mesh to smooth the given curves and calculate the local curvature of the deformed sheet. The fittings of the deformed sheet and tool surface profile ensure the stability and the convergence of the finite element analysis of highly nonlinear stamping processes. A center floor section and front fender section are analyzed to show the accuracy and robustness of the approach. The results obtained by the proposed approach are compared with the available experimental data.

  • PDF

프런트 엔드 모듈 캐리어 어퍼 부재의 면품질 개선을 위한 금형설계 변경 (Design Modification of the Stamping Die for the Improvement of Surface Quality of the Front End Module Carrier Upper Member)

  • 김세호
    • 소성∙가공
    • /
    • 제14권2호
    • /
    • pp.153-159
    • /
    • 2005
  • Design modification of the stamping die for the upper member of a front end module carrier is carried out in order to improve the surface quality of the final product. The small inferiority induced by wrinkling near the wall of the upper member has been inspected after the draw-forming process. The finite element analysis is pursued with the whole geometry in order to consider the complicated shape. The simulation shows that the excess metal is developed by the irregular contact of the blank the tool and it remains after the final stroke. This paper proposes two guidelines for the modification. One is to add the draw-bead near the critical region in order to increase the draw-in force. The other is to modify the tool shape such as the forming shape at the wall in order to absorb the excess metal before the final stroke. Simulation results show that the proposed guidelines both guarantee the improved surface quality.

재료변수와 공정변수가 스템핑 성형성에 미치는 영향 연구 (Sensitivity Analysis of Material and Process Variables Affecting on the Stamping Formability)

  • 김영석;박기철
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2246-2256
    • /
    • 1996
  • To investigate the effect of material and precess variables on stamping formability of sheet materials, simulations for the cup drawing and the Yoshida buckling test were carried out using ABAQUS, commercial nonlinear finite element analysis code. The various factor effects on stamping formability of sheet materials were analyzed by the designed process according to Taguch's orthogonal array experiment. Cup drawing simulation showed that local neckling was very sensitive to plastic anisotropy parameter of sheet material and friction coefficient between sheet and tool interface. Simulations for the Yoshida buckling test have clarified that buckling behaviour of sheet material was mostly susceptible to yield stress and sheet thickness mostly. However, plastic anisotropy parameter and strain hardening coefficient affect moderately buckling behaviour of steel sheets after the buckling initiation.

공작기계 기술의 현재와 미래(17) (Machine Tool Technology; The Present and the Future(17))

  • 강철희
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.13-27
    • /
    • 1996
  • 소성가공이란 원재료를 소성변형(Plastic deformation)을 통해서 고체의 제품을 만드는 가공법이다. 가공중에 물체의 질량과 체적에는 크게 변화가 없다. 소성 가공중 주응력이 어떻게 작용하느냐에 따라서 소성가공을 여러가지로 분류하고 있다. 즉, Metal Forming은 다음과 같이 분류할 수 있다. 1) Compound Forming에는, Rolling, Free forming, Die forming, Stamping, Pressing 2) Tension compression forming에는, Drawing, Deep-drawing, Rimming, Spinning, Bulge forming 3) Tension forming에는 Lengthening, Widning, Deepening 4) Bending에는 Bending with linear tool motion, Bending with rotary tool motion 5) Thrust forming에는 Swaging, Twisting이 있다.

  • PDF

자동차 프레스 금형의 스티로폼-패턴 가공을 위한 전용 CAM 시스템 개발 (Development of a Dedicated CAM System for Styrofoam-pattern Machining)

  • 박정환
    • 한국CDE학회논문집
    • /
    • 제3권4호
    • /
    • pp.223-235
    • /
    • 1998
  • A dedicated CAM(Computer-Aided Manufacturing) system has been developed, which generated tool-path to machine Styrofoam stamping die-patterns in Chrysler Corporation. A previous process to build die-patterns was to "stick build" the pattern, in which stock is cut & glued together, and then the NC machining of part-surface shape completes building a Styrofoam die-pattern. The current process utilizes the developed CAM system, and almost removes the manual work, consequently reduces the overall lead time. The paper presents the overall system structures, tool-path generation, and some features of Styrofoam pattern machining.

  • PDF