• Title/Summary/Keyword: Stamping

Search Result 509, Processing Time 0.02 seconds

Improvement of the Stamping Process for Sheet Metal Prototypes of an Auto-body with Finite Element Analysis (유한요소해석을 이용한 차체시작부품 프레스성형 공정 개선)

  • Kim, Se-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.496-504
    • /
    • 2011
  • This paper introduces a CAE-based design procedure in the press forming process for the fabrication of sheet metal parts used in proto-cars. The finite element analysis reveals formability problems during the forming process of a floor member and a front cross member that constitute a rear floor assembly. The study proposes the modification of the initial blank shape or intermediate trimming of the product to prevent failure during forming. It is confirmed by the tryout process as well as the finite element analysis that sound prototype can be obtained with the modified design. The finite element analysis result also provides fairly good prediction of springback amounts used for the post-compensation of the product.

Formulation of the Contact Damping and its Application to the Explicit Finite Element Method (접촉감쇠의 수식화 및 외연적 유한요소법에의 적용)

  • 이상욱;양동열;정완진
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.306-312
    • /
    • 1999
  • In the recent sheet metal forming simulations, it increases to adopt the dynamic explicit method for an effective computation and the elastoplastic formulation for stress recovery. It is inevitable in the dynamic explicit method that some noises occur, which sometimes partly spoil results of simulations. This phenomenon becomes severer when complicate contact conditions are included in simulations. In commercial dynamic codes, the concept of contact damping is introduced. However, the formulation process of it is not revealed well. In this paper, a contact damping method is formulated in order for effectively suppressing noises occurring due to complicated contact conditions. This is checked by analyzing a simple sheet metal stamping process (U-draw bending). From the computational results, it is shown that the contact damping can effectively control the noises due to contacts, especially when considering the sheet thickness, and help to develop more reliable internal stress states, which result in more realistic shapes after springbank.

  • PDF

General characteristic of springback about an automobile Panel (자동차 패널에 대한 스프링백의 일반적인 특성)

  • Lee, Jong-Moon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.3-10
    • /
    • 2003
  • Springback after draw and flange is the critical factor affecting the product quality. It is very difficult to predict the amount of springback not only because of complex geometry and material characteristics of the stamping product, but because the methodology has not been established. In this study, springback mechanism is introduced, and experimental tryout an automobile panel is carried out for die design of automotive hood panel. Further, introduce adapting design and field springback was verified by trial experimental with the measured tryout result. Finally, introduced about general method in order to predict springback in computer simulation.

  • PDF

Tube Hydroforming Process Design of Torsion Beam type Rear Suspension Considering Durability (내구성을 고려한 토션빔형 후륜 현가장치의 튜브 하이드로포밍 공정 설계)

  • Lim, H.T.;Oh, I.S.;Ko, J.M.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.201-209
    • /
    • 2007
  • Generally, the forming process of suspension system parts have been considered only considered with the formability and have not been considered with the durability of suspension system. But the durability of suspension system is very important characteristic for the dynamic performance of vehicle. Therefore, the suspension system should be manufactured to consider the durability as well as the formability. This paper is about an optimum forming process design with the effect of section properties to consider the roll durability of torsion beam type suspension. In order to determine the tube hydroforming process for the satisfaction the roll durability, the stamping and hydroforming simulation by finite element method were performed. And the results from finite element analysis and roll durability examination showed the tube hydroforming process of torsion beam is optimized as satisfying the durability performance.

Prediction of Deformation Mechanism and Fracture for an Auto-Part with Advanced High Strength Steel using Solid Element and Damage Theory (연속체요소 및 손상이론을 이용한 고강도강 차량부품의 변형기구와 파단 예측)

  • Kwak, J.H.;Yoon, S.J.;Kim, S.H.;Park, J.K.;Han, H.G.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.293-299
    • /
    • 2017
  • In this paper, finite element stamping analysis was carried out for the front lower arm to examine the applicability of solid element with damage theory to predict shear fracture phenomena induced by sheared edge as well as deformation mechanisms. Mechanical properties related to deformation and damage theory were determined from tensile test. Shear fracture was predicted by normalized Cockcroft-Latham model with initial imposition of the damage value along the sheared edge. Simulation results illustrated that the analysis with solid element and damage theory predicted edge profile, strain distribution, and forming load more accurately than the analysis with shell element. Simulation with solid element can also predict the shear fracture more exactly comparing to analysis with shell element and forming limit curve.

A Study on the Behavior of Wrinkles in Cup Drawing with AL alloy (AL합금의 용기 성형시 주름의 거동에 관한 연구)

  • 김진무;최용식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.845-848
    • /
    • 2002
  • The wrinkling in the flange and wall of a part is a predominent failure mode in stamping of sheet metal parts. In many cases this wrinkling may be eliminated by appropriate control of the blank holding forco(BHF), but BHF affects the draw depth. Gotoh had studied the wrinkles under 0.02mm in height. In general, the height of wrinkles could be limited under 0.2mm practically. Therefore small BHP can be allowed so that the depth of drawing could be increased. Authors research the variation of the wrinkles in flange in the course of cup drawing by using aluminium alloy Al050 and A5052.

  • PDF

Heat Transfer Enhancement by the Combined Effect of Louver Angle and Angle of Attack of Vertex Generator (와류발생기의 충돌각과 루버각의 상호작용에 의한 열전달촉진)

  • 박병규;정재동;이준식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.477-484
    • /
    • 2002
  • A numerical investigation of the performance of the plate heat exchanger with rectangular winglet is conducted to examine the combined effect of vortex generator and louver fins. Velocity and temperature fields and spanwise averaged Nu and friction factor are presented. Enhancement of heat transfer and flow loss penalty is evident. A Parametric study of three factors (Re, angle of attack and louver angle) with levels of 5 (Re= 300, 500, 700, 900, 1100), 4($\alpha=15^{\circ}, 30^{\circ}, 45^{\circ}, 90^{\circ},$), and 4($\beta=0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}$), respectively, indicates the performance defined by the ratio of heat transfer enhancement to flow loss penalty shows monotonic behavior for each parameter alone but the interactions between parameters is found to be considerable effect on the performance of heat exchanger and should be considered in design. The effect of stamping is also examined.

Study on the 3D Design of Bracket with Automatic Module (자동화 모듈을 활용한 브라켓의 3D설계에 관한 연구)

  • Choi, Kye-Kwang;Kim, Kwang-Hee;Lee, Dong-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1164-1169
    • /
    • 2009
  • In this study, the bracket for car was designed in 3D using Cimatron Die Design, one of the automatic modules. To facilitate the stamping of the product, the layout of the strip was adjusted slightly. The blank layout of the double-width, 2-line, 2-pull out inner carrier was then optimized as a single arrangement. 3D design was completed in 11 processes.

Determination of Shape and Position for Reinforcement Blank at Simultaneous Forming of Automotive Side Member (자동차용 사이드 멤버 일체복합성형시 보강판재의 형상 및 위치 결정)

  • Kim, H.Y.;Hwang, S.H.;Kim, K.H.;Yun, J.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.223-227
    • /
    • 2007
  • New forming technologies are being introduced to automotive manufacturing processes. Among them, a simultaneous forming is one of the innovative forming technologies to be able to reduce production time and cost. Several parts can be simultaneously manufactured by the process, while the conventional stamping demands the same number of die sets with the number of parts. In this study, the automotive rear floor side member was manufactured by the simultaneous forming. The position and the size of initial blank were determined by forming analyses and try-outs, and the blank movement during the forming was controlled by introducing the spotweld.

  • PDF

Finite Element Springback Analysis of Vertically-Walled Auto-Body Part (수직벽을 가진 자동차 부품 성형공정의 스프링백 유한요소 해석)

  • 이두환;윤치상;신철수;조원석;구본영;금영탁
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.574-581
    • /
    • 2000
  • A vertically-walled auto-body part is one of the most difficult stamping parts because of angle change, wall curl, and twisting of the blank after springback as well as fracture and wrinkle. In this study, computational simulations of the vertically-walled auto-body part are carried out focusing on angle change, wall curl, and twisting after springback. Binderwrap blank shape is used in forming analysis for precise initial contacts between punch and blank. An adaptive mesh method is used in springback analysis for precise calculation of bending moments. In springback analysis, the differences of 2 and 3 dimensional analysis are compared and the effects of blank holdig force and friction coefficient are evaluated. In order to verify the validity of simulation results, they are compared with measured ones. The predicted thickness distribution and formed shape are agreed well with those of the measurement. The Predicted springback amount is less than that of the measurement.

  • PDF