• Title/Summary/Keyword: Stainless steels

Search Result 534, Processing Time 0.024 seconds

Sintering Stainless Steels with Boron Addition in Nitrogen Base Atmosphere

  • Abenojar, J.;Esteban, D.;Martinez, M.A.;Velasco, F.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.574-575
    • /
    • 2006
  • Due to the increasing use that the stainless steel is getting recently in the nuclear industry, this document proposes the study of the stainless steel 316L with boron addition. With the final product, the properties of the stainless steel 316L (good mechanical properties and high corrosion resistance) with the boron neutron absorption properties are claimed to unify. The P/M technologies allow adding higher boron quantities than with the solidification conventional technologies, where segregation is produced.

  • PDF

A Study on the Mechanical Properties and Deformed Layer of STS 316L and 316LN Stainless Steels (STS 316L과 316LN 강의 고온 기계적 특성 및 가공 변질층에 관한 연구)

  • Oh, Sun-Se;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.71-79
    • /
    • 2004
  • The deformed layers generated in face milling works were comparatively investigated to type 316L and nitrogen(N)-added type 316LN stainless steels. In order to characterize mechanical properties between type 316L and type 316LN, high-temperature tensile tests were conducted with different temperatures: R.T to $700^{\circ}C$. The cutting forces of three components, Fx, Fy and Fz were measured using a tool dynamometer through the face milling cutting tests. The deformed layers were measured by micro-hardness tests along deformed layers. The results of mechanical properties showed that type 316LN was superior to type 316L. The deformed layers of two steels were generated in the 1501m-3001m ranges, and type 316L was higher than type 316LN. The reason for this is due to the high strength properties by nitrogen effect. It was found that deformed structures were well observed for type 316L, but were minutely observed for type 316LN in this cutting conditions.

Review on Delayed Hydride Cracking and Stress Corrosion Cracking of Metals (합금속의 수소취성과 응력부식균열 고찰)

  • Kim, Young Suk;Cheong, Yong Moo;Im, Kyung Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.266-273
    • /
    • 2004
  • The objective of this study is an understanding of stress corrosion cracking of metals that is recognized to mostly limit the lifetime of the structural materials by comparing the features of delayed hydride cracking of zirconium alloys with those of stress corrosion cracking (SCC) of Ni-based alloys and hydrogen cracking of stainless steels. To this end, we investigated a dependence of delayed hydride cracking (DHC) velocity on the applied stress intensity factor and yield strength, and correlated a temperature dependence of the striation spacing and the DHC velocity. We reviewed a similarity of the features between the DHC of zirconium alloys, the SCC of Ni-based alloys and turbine rotor steels, and the hydrogen cracking of stainless steels and discussed the SCC phenomenon in metals with our DHC mode.

Mechanical properties and immersion characteristics of sensitinized STS310S, STS316L and STS347H in the range of 480~720℃ (480~720℃에서 예민화한 STS310S, STS316L 및 STS347H의 기계적 성질 및 침지 특성)

  • Kim, Young-Soo;Lee, So-Young;Do, Jae-Yoon;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.43-50
    • /
    • 2016
  • The current study was carried to understand the immersion characteristics and mechanical properties of heat treated stainless steels. Stainless steels (STS310S, STS316L and STS347H) were thermally treated at temperature ranges from 480 to $720^{\circ}C$. Nominal stress was determined to be slightly different depending on the heat treatment temperature. The Cr concentration in STS310S was increased at the temperatures of 600 and $660^{\circ}C$, whereas the Cr concentration in STS316L and STS347H were almost constant regardless of heat treatment temperatures. Vickers hardness was found larger as a thermal treatment temperature was increased. Immersion tests of the stainless steels were also carried out in acidic solution and alkaline solution for 240 hours. Among three different stainless steels, the pitting was detected in the acidic solution, not in the alkaline solution. The pitting of STS347H was occurred more than STS310S and STS316L.

Corrosion and Wear Properties of Cold Rolled 0.087% Gd Lean Duplex Stainless Steels for Neutron Absorbing Material

  • Choi, Yong;Baik, Youl;Moon, Byung-Moon;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.164-168
    • /
    • 2016
  • Lean duplex stainless steels with 0.087 wt.% gadolinium (Gd) were inert arc-melted and cast in molds of size $10mm{\times}10mm{\times}20mm$. The micro-hardnesses of the rolling direction (RD), transverse direction (TD) and short transverse (ST) direction were $258.5H_V$, $292.3H_V$, and $314.7H_V$, respectively. A 33% cold rolled specimen had the crystallographic texture that (100) pole was mainly concentrated to the normal direction (ND) and (110) pole was concentrated in the center of ND and RD. The corrosion potential and corrosion rate in artificial seawater and $0.1M\;H_2SO_4$ solution were in the range of $105.6-221.6mV_{SHE}$, $0.59-1.06mA/cm^2$, and $4.75-8.25mV_{SHE}$, $0.69-1.68mA/cm^2$, respectively. The friction coefficient and wear loss of the 0.087 w/o Gd-lean duplex stainless steels in artificial seawater were about 67% and 65% lower than in air, whereas the wear efficiency was 22% higher. The corrosion and wear behaviors of the 0.087 w/o Gd-lean duplex stainless steels significantly depended on the Gd phases.

Effects of Alloying Elements on Sticking Occurring During Hot Rolling of Ferritic Stainless Steels (페라이트계 스테인리스강의 열간압연 시 발생하는 Sticking에 미치는 합금원소의 효과)

  • Ha, Dae Jin;Kim, Yong Jin;Lee, Jong Seog;Lee, Yong Deuk;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.593-603
    • /
    • 2008
  • In this study, effects of alloying elements on the sticking occurring during hot rolling of five kinds of ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior of the rolled steels. Hot-rolling simulation tests were conducted by a high-temperature wear tester which could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased, whereas the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five stainless steels was evaluated by considering both the high-temperature hardness and oxidation effects. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not show any difference in the sticking. Particularly in the case of the Si addition, Si oxides formed first in the initial stage of high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus raised the sticking resistance by about 10 times in comparison with the steel without Si content.

Evaluation of Monkman-Grant Parameters for Type 316LN and Modified 9Cr-Mo Stainless Steels

  • Kim, Woo-Gon;Kim, Sung-Ho;Ryu, Woo-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1420-1427
    • /
    • 2002
  • The Monkman-Grant (M-G) and its modified parameters were evaluated for type 316LN and modified 9Cr-Mo stainless steels prepared with minor element variations. Several sets of creep data for the two alloy systems were obtained by constant-load creep tests in 550~650$\^{C}$ temperature range. The M-G parameters, m, m', C, and C' were proposed and discussed for the two alloy systems. The m value of the M-C relation was 0.90 in type 316LN steel and 0.84 in modified 9Cr-Mo steel. The m' value of the modified relation was 0.94 in type 316LN steel and 0.89 in 9Cr-Mo steel. Although creep fracture modes and creep properties between type 316LN and modified 9Cr-Mo steels showed a basic difference, the M-G and its modified relations demonstrated linearity quite well. The m' of modified relation almost overlapped regardless of the creep testing conditions and chemical variations in the two alloy systems, and the parameter m' was closer to unity than that of the M-G relation.

A study on the formation of oxide scale on the stainless steel to improve the oxidation resistance (스테인레스강의 내산화성 향상을 위한 스케일 형성에 관한 연구)

  • 김대환;김재철;김길무
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.6
    • /
    • pp.333-342
    • /
    • 1995
  • Stainless steels are widely selected as commercial engineering materials mainly because of their excellent corrosion resistance, oxidation resistance and strength. Because the manufacturing temperature of stainless steels is relatively high, the chemical and physical properties of the oxide film which was formed on the stainless steels are of importance in determining the rate of oxidation and the life of equipment exposed to high temperature oxidizing environments. In this study, the oxidation behavior of S. S. 304 and S. S. 430 added by a small amount of oxygen active elements(each +0.5wt% Hf and Y) was studied to improve oxidation resistance. The results of cyclic and isothermal oxidation on S. S. 304 added by OAE showed relatively poor oxidation resistance due to spallations and cracks of $Cr_2O_3$ layer. But all S. S. 430+0.5wt% OAE maintained constant oxidation rates and stable oxide layers at high temperature environment. Especially S. S. 430+0.5wt% Y formed a $Cr_2O_3$ oxide layer and improved cyclic oxidation resistance preventing loss of protective layers about 1000 hours at $1000^{\circ}C$

  • PDF

Effect of Alloying Elements of Mn and Ni on the Pitting Corrosion Resistance of 22Cr Lean Duplex Stainless Steel (22Cr 린 듀플렉스 스테인리스강의 공식저항성에 미치는 Mn과 Ni 첨가의 영향)

  • Ahn, Y.S.;Bae, K.K.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.76-82
    • /
    • 2012
  • Duplex stainless steels have the dual microstructure of austenite and ferrite phases. This steel exhibits generally a high corrosion resistance and higher mechanical strength compared with austenitic stainless steels. The steels used in the investigation have the chemical composition of Fe-22Cr-xNi-yMn-0.2N in which the contents of Ni and Mn were varied with maintaining the equal [Ni/Cr] equivalent. The fraction of ferrite phase was increased with the increase of annealing temperature. The impact factor of Mn element on the [Ni] equivalent was amended on the basis of the results of the investigation. 4Mn-2Ni alloy showed the highest pitting corrosion resistance. The fraction ratio, grain size and misorientation angle between grains were measured, and the correlation with pitting potential was investigated.

Corrosion Properties of Duplex Stainless Steels - STS329LD and STS329J3L - for the Seawater Systems in Nuclear Power Plant

  • Chang, Hyun-Young;Park, Heung-Bae;Kim, Young-Sik;Ahn, Sang-Kon;Jang, Yoon-Young
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.60-64
    • /
    • 2011
  • Lean duplex stainless steels have been developed in Korea for the purpose of being used in the seawater systems of industry. There are also many important seawater systems in nuclear power plants. These systems supply seawater to cooling water condenser tubes, heat exchanger tubes, related pipes and chlorine injection systems. The flow velocity of some part of seawater systems in nuclear power plants is high and damages of components from corrosion are severe. The considered lean duplex stainless steels are STS329LD (20.3Cr-2.2Ni-1.4Mo) and STS329J3L (22.4Cr-5.7Ni-3Mo) and PRENs of them are 29.4 and 37.3 respectively. Physical, mechanical and micro-structural properties of them are evaluated, and electrochemical corrosion resistance is measured quantitatively in NaCl solution. Critical Pitting Temperatures (CPT)s are measured on these alloys and pit depths are evaluated using laser microscope. Long period field tests on these alloys are now being performed, and some results are going to be presented in the following study.