• Title/Summary/Keyword: Stainless Steel (STS)

Search Result 363, Processing Time 0.02 seconds

Effect of Groove Shapes on Mechanical Properties of STS316L Repaired by Direct Energy Deposition (직접 에너지 적층을 통한 STS316L 소재의 보수 공정에서 그루브 형상이 기계적 특성에 미치는 효과)

  • Oh, W.J.;Son, Y.;Son, J.Y.;Shin, G.W.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.103-112
    • /
    • 2020
  • This study explores the effects of different pre-machining conditions on the deposition characteristics and mechanical properties of austenitic stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we varied the shape of the pre-machined zone for repair in order to prevent cracks from occurring at the slope surface. After repairs by the DED process, macro-scale cracks were observed in samples that had been pre-machined with elliptic and trapezoidal grooves. In addition, it was not possible to completely prevent micro-crack generation on the sloped interfaces, even in the capsule-type grooved sample. From observation of the fracture surfaces, it was found that the cracks around the inclined interface were due to a lack of fusion between the substrate and the powder material, which led to low tensile properties. The specimen with the capsule-type groove provided the highest tensile strength and elongation (respective of 46% and 571% compared to the trapezoidal grooved specimen). However, the tensile properties were degraded compared to the non-repaired specimen (as-hot rolled material). The fracture characteristics of the repaired specimens were determined by the cracks at the sloped interfaces. These cracks grew and coalesced with each other to form macro-cracks, they then coalesced with other cracks and propagated to the substrate, causing final fracture.

A study on the optimization of manufacturing processes of double wall bellows for dual fuel engine II - Optimization of welding process - (Dual Fuel 엔진용 이중관 벨로우즈 제작 공정의 최적화에 관한 연구 II - 용접공정의 최적화 -)

  • Kim, Pyung-Su;Kim, Jong-Do;Song, Moo-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.504-509
    • /
    • 2016
  • Production processes of double wall bellows can be roughly categorized into two steps. In the first step, inner and outer bellows are made of STS316L in austenite stainless steel due to their excellent formability and corrosion resistance. In the second step, the double wall bellows are manufactured using the welding method with both the inner and outer bellows. The microstructure and defects of each weldment are observed to ensure the reliability of bellows since weldment is a highly vulnerable part, which can crack and fracture when bellows are formed or used. In this study, optimum welding conditions were derived from the analysis of microstructure and inspection of weldment of bellows that were produced using various welding procedure. Moreover, the mechanical properties were evaluated through hardness measurement of substrate, weldment and the heat-affected zone.

Underground Heat Transfer Characteristics of the Underground Heating System for Soil Sterilization in Greenhouse (온실 내 토양소독을 위한 지중난방시스템의 지중 열전달 특성)

  • Park, Kyung-Kyoo;Ha, Yu-Shin;Hong, Dong-Hyuck;Jang, Seung-Ho;Kim, Jin-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.108-115
    • /
    • 2010
  • This study was conducted to estimate the optimum temperature and required time for soil sterilization when heated water was circulated through underground heating pipes in the greenhouse which solar heat was influenced to the temperature of soil during the summer day. Two different types of heating pipes were used for the experiment. One was a polyethylene pipe(XL) and the other was a corrugated ring shaped stainless steel pipe(STS). The results of the studies were summarized as follows; By measuring the thermal characteristics of the XL and STS, it was examined that the average temperature differences of the inlet and outlet were $8.5^{\circ}C$ and $13.3^{\circ}C$, the average flowrates were 15.3 L/min and 5.6 L/min, and the average radiation powers were 9.1 kW and 4.1 kW, respectively. As results of the regression analysis of underground temperatures, when average soil temperature was$35^{\circ}C$, an average water temperature was $80^{\circ}C$, and XL was used, it was estimated that the possible heat transfer distance, the required time for heat transfer and heat flux to reach the underground temperature of $60^{\circ}C$ were 300 mm, 230 hours, and $7.57kW/m^2$, respectively.

Effect of Interface on Thermal Conductivity of Clad Metal through Thickness Direction for Heat Sink (히트 싱크용 클래드메탈에서 두께 방향의 열전도 특성에 미치는 계면의 영향)

  • Kim, Jong-Gu;Kim, Dong-Yong;Kim, Hyun;Hahn, Byung-Dong;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.67-72
    • /
    • 2015
  • A study on thermal properties for a single-layer metal and a 2-ply metal (clad metals) was investigated for the application of heat sink. For the single-layer metal, a stainless steel (STS) and an aluminum (Al) were selected. Also, a roll bonded clad metal with STS and Al was chosen for the 2-ply metal. The thermal conductivity of the sample was obtained from the thermal diffusivity measured by the light flash analysis (LFA), specific heat and density. Measured thermal property values were compared with the calculated values using the data from the references. For the single-layer metal, measured values for the thermal diffusivity and thermal conductivity were smaller than calculated values. Differences between measured and calculated values were about 6% and 18% for the STS and Al samples, respectively. For the clad metals, however, a large difference (55%) was observed. Here, a relatively small thermal conductivity measured by LFA was due to the existence of a interface between STS and Al in the clad metal. Such a interface reduces the moving velocity of free electrons and phonons in the clad metal. For the development of a high performance heat-issipation module with the multi-layer structure, the control of interface properties which determine thermal properties was confirmed to be important.

Evaluation of the Shape Accuracy of Turning Operations (선삭가공에서의 형상 정밀도에 대한 평가)

  • Park, Dong-Keun;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1645-1651
    • /
    • 2015
  • This paper describes the changes of shape accuracy in workpiece materials depending on the turning clearance angle. The experiments started from choosing three workpiece materials, SM45C(machine structural carbon steel), STS303(stainless steel) and SCM415 (chrome-molybdenum steel). The experiments showed specifically how features of selected materials changed when they were processed with diverse machining depths, 0.1 mm, 0.2 mm and 0.3 mm, with various negative angles, $0.0^{\circ}(-6.0^{\circ})$, $0.3^{\circ}(-6.3^{\circ})$ and $0.9^{\circ}(-6.9^{\circ})$, and called cutting edge inclination starting from a fixed rotational speed, 2,500 rpm, focusing on the feed rate, 0.07 mm/rev and 0.10 mm/rev. The results of the accuracy of processing, cylindricity, deviation from coaxiality, etc. were compared using the graph and table. The accuracy of cylindricity in the order of degree $0.0^{\circ}{\rightarrow}0.3^{\circ}{\rightarrow}0.9^{\circ}$ depending on the workpiece materials showed the best cylindricity when it was $0.9^{\circ}$. In conclusion, the accuracy improved in specific degrees irrespective of the quality of the materials when the bite negative angles increased. This means that workability improved in these experiments. In addition, the processing shape changed depending on depth of the cut and feed rate.

A study for biocompatibility of acupuncture's metal material - Focused on chemical composition and mechanical character - (침 금속재료에 대한 생체적합성 연구 - 화학적 조성 및 기계적 특성을 중심으로 -)

  • Baek, Yong-hyeon;Chung, In-tae;Lee, Sang-hun;Lee, Jae-dong;Choi, Do-young
    • Journal of Acupuncture Research
    • /
    • v.21 no.4
    • /
    • pp.159-176
    • /
    • 2004
  • Objective : To present a criteria for acupuncture standardization, which will improve quality of acupuncture and secure safety, through studies of the biocompatibility of acupuncture. Methods : The acupunctures distributed in Korea were studied. The chemical composition, elasticity, and the solidity of the acupuncture's metal material was analyzed. Results & Conclusions : 1) The acupunctures distributed in Korea were all produced with ST304. Because acupuncture is used on a living body, the corrosion resistance, allergy proof and magnetism of the metal material should be considered. In this point, STS316 stainless steel would be more suitable than ST304. 2) The elasticity and solidity of the acupuncture's metal material distributed in Korea meet the medical instrument standards of the Korea Food and Drug Administration. But since the standards are only roughly outlined, the criteria should be realized and standardized.

  • PDF

Development of surface treatment materials for improving durability of metallic bipolar plates in PEMFC (연료전지용 금속분리판 내구성 향상을 위한 표면처리기술 개발)

  • Kim, Myong-Hwan;Goo, Young-Mo;Yoo, Seung-Eul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.41-44
    • /
    • 2008
  • 본 연구에서는 고분자 전해질 연료전지용 금속분리판의 전기화학적 부식을 방지하기 위한 금속 첨가 DLC(Diamond-like-carbon) 표면처리 방법을 개발하였으며, stainless steel 304를 모재로 하여 텅스텐 첨가 DLC, 티타늄 첨가 DLC, 몰리브덴 첨가 DLC 금속분리판을 제작하였다. 제작된 금속분리판을 이용하여 내구성 평가,전기화학적 부식 특성, 성능평가 및 접촉저항 특성 등을 평가하였다. 전기화학적 부식특성의 경우 각각의 분리판에 대해 6.69, 1.2, 1.0 ${\mu}A/cm^2$로 모재인 STS 304의 25 ${\mu}A/cm^2$의 부식전류밀도에 비해 우수한 부식특성을 보였다. 또한 초기 성능에서 몰리브덴 첨가 DLC 분리판의 경우 300 mA/$cm^2$에서 0.757 V로 측정되었으며, 이는 graphite 분리판 측정 결과인 0.758 V와 유사한 성능을 보였다. 또한 내구성 평가에서 초기 성능 대비 성능 감소율이 10% 감소하는데 소요된 시간은 graphite 분리판의 경우 2,000시간으로 나타났으며, 몰리브덴 첨가 DLC 분리판의 경우 1,700시간으로 측정되었다. 1,500시간 까지의 성능 감소율은 grphite,텅스텐 첨가DLC,티타늄 첨가DLC, 몰리브덴 첨가 DLC 분리판 순으로 각각에 대해 37.7, 60.3, 92.8, 45.7 ${\mu}V$/hr로 나타났다.

  • PDF

The Effect of Process Parameter on the Symmetry of Nugget in Micro-resistance Series Spot Welding (정밀저항시리즈 점용접에서 너깃의 대칭성에 미치는 공정변수의 영향)

  • 조상명;김송미
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.622-629
    • /
    • 2001
  • The aim of this experiment is to establish the method that obtains symmetrically two nuggets in microresistance series spot welding. The sheets of austenite stainless steel STS304 applied to various electronic parts were experimented by the inverter welding power source of polarity controllable type and by the twin head for left and right electrode force to be controlled separately. The experimental results were obtained as follows : 1) When series spot welding was carried out by DC 1 pulse as welding current with same electrode force at left and right, the asymmetry of nuggets was resulted from the larger nugget of the (-) pole because of the Peltier effect. The dynamic resistance of weld spot at left and right was appeared differently according to the growth of nuggets. 2) When AC 1 cycle by welding power source of polarity controllable type was applied, the nuggets were almost symmetrically formed. 3) In a twin head, if the electrode force of (-) pole was larger than that of (+) pole, the diameters of two nuggets became to same. It was confirmed that the dynamic resistance of (-) pole was decreased to the same level as it of (+) pole. 4) Although the forces of left and right electrode were same, and only DC 1 pulse was applied, symmetric nuggets were obtained if the conductivity of (+) pole was lower than it of (-) pole.

  • PDF

Structural Analysis of 1000A Butterfly Valve Components (1000A용 버터플라이 밸브 주요부품의 구조해석)

  • Kong, Yu-Sik;Kim, Seon-Jin;Jung, Min-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.140-145
    • /
    • 2009
  • This paper deals with a stability evaluation of a butterfly valve using the body and disc of a valve seat. The experimental results of a strength evaluation are shown using STS316 stainless steel and spheroidal graphite cast iron (GCD450). The disc material was made from GCD450. The results of the strength analysis are as follows: Ultimate tensile strength 485MPa, Yield strength 370 MPa, Young's modulus $1.1{\times}10^5$, and Poisson's ratio v = 0.28. For the results of the disc analysis, the safety factor was about 4. This shows that a design was derived that satisfied the requirements of structural safety. However, some problems, such as the deflection and deformation of the disc, may occur when the sea water has back flow with a high pressure.

Machining characteristics of micro end-mill using high revolution (고속회전을 이용한 마이크로 엔드밀의 가공특성)

  • Kim, Kisoo;Kim, Sangjin;Cho, Byoungmoo;Kim, Hyeungchul
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.350-363
    • /
    • 2006
  • Recently, the micro end-milling processing is demanded the high-precise technique with good surface roughness and rapid time in milli-structure parts, micro machine parts and molding industry. The cutting conditions of micro end-milling has an effect on surface roughness of cutting surface. Therefore this study was carried out to cut stainless steel using high revolution air bearing spindle and micro end-mill and analyze the cutting condition to get the optimum surface roughness by design of experiment. From this study, surface roughness have an much effect according to priority on depth of cut, revolution of spindle and feed.