• Title/Summary/Keyword: Stage-Discharge Curve

Search Result 80, Processing Time 0.028 seconds

A Study on the 2-Stage Startup of Liquid Rocket Engine (액체로켓엔진의 2단 시동에 관한 연구)

  • Park, Soon-Young;Cho, Won-Kook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.324-327
    • /
    • 2008
  • Two stage startup of high thrust liquid rocket engine can reduce the abrupt impulse to the vehicle and engine by changing oxidizer flow rate to the combustion chamber. Also it ensures stable ignition of combustion chamber against hard start and to prevent pump stall by the sudden supply of large mass flow rate. However high discharge pressure of oxidizer pump or temperature rise in gas generator may be a problem in applying the preliminary stage. To solve this problem, we analyzed the effect of the slope of oxidizer pump's head curve and the oxidizer mass flow rate to combustion chamber during preliminary stage using the rocket engine startup analysis code. A moderate slope(${\circleddash}{\sim}$-3) of head curve and 80% mass flow rate during preliminary stage can reduce the oxidizer pump discharge pressure by 15 to 20% comparing with the condition of ${\circleddash}$=-4.37 head curve and 70% mass flow rate. Also it can maintain the turbine inlet temperature rise within 50K from the nominal value.

  • PDF

Estimation of Rivers Discharge by Probabilistic Velocity Function Considering Hydraulic Characteristics (하천 수리특성을 고려한 확률론적 유속공식에 의한 하천유량 산정)

  • Choo, Tai Ho;Lee, Sang Jin;Park, Sang Woo;Oh, Ryun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.537-542
    • /
    • 2009
  • To improve stage-discharge curve equation considering water level's function, this study suggested the method that can efficiently compute rivers discharge based on hydraulic characteristics such as river width, area, channel bed slope and entropy concept adopting probabilistic approach. This scheme is proposed to estimate discharge from the velocity formulation based on the entropy function in the equilibrium state derived from the relation between mean and maximum flow velocity. It has been tested using field and laboratory hydraulic data collected from the Alberta university in Canada. As a result it was found that the method proposed in this study was more efficient and accurate comparing with the traditional stage-discharge curve equation.

Analysis of Hydrodynamic Characteristics Apply to Nature-Friendly Stream Protection Method (자연형 호안공법을 적용한 소하천의 수리특성 분석)

  • Lee, Gang-Seuk;Park, Jong-Hwa;Yeon, Kyu-Bang
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.71-81
    • /
    • 2010
  • Stream Pilot Project, which began in May 2003 and finished in December 2003, was selected to develop effective methods applicable to nature-like streams. Stream restoration projects aim to maintain or increase ecosystem goods and services while protecting downstream and coastal ecosystems. Fields environmental monitoring such as flow discharge and precipitation were conducted along the Idong stream for amount of channel zone change in 2007. This study selected three monitoring positions to measure the water level and discharge of flowing water. A stage-discharge relation is obtained from direct discharge measurements for three stations by fitting an empirical relationship to the data set. Since discharge measures are made only for low flow conditions, a curve of discharge against stage can then be built by fitting these data with a power curve. And this study used data obtained from floodmark checkup as well as HEC-RAS model to analyze the hydrodynamic characteristics of monitoring sites. Reach-averaged hydraulic parameters for the supply reach were calculated from the small area's HEC-RAS model for Idong stream, and a HEC-RAS model used to analyze hydraulics for a period in 2007, after the stream was considered bank stabilization.

  • PDF

Development of Looped Rating Curve at Hwawon Station (화원 수위관측소 지점의 고리모양 수위-유량 관계곡선 작성)

  • Kang Shin-Uk;Lee Sang-Ho;Hwang Man-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.487-494
    • /
    • 2006
  • The flood discharge on the rising limb of a hydrograph at Hwawon station greatly differs from the flood discharge on the falling limb for the same stage. When there is such a big hysteresis, there can be a significant amount of errors in the rated discharge obtained from a simple rating curve. To reduce errors in rated discharges, a looped rating curve was established for Hwawon station in the Nakdong River. In order to compute the deviation between real discharges and simply rated discharges, a simple rating curve was established using the stage and discharge data from the results of a hydraulic channel routing. The relationship between the discharge deviation ${\Delta}Q$ and a product of B and ${\Delta}h/{\Delta}t$ was analysed, where B is the channel topwidth; ${\Delta}h$ is the stage increment; At is the time increment. Strong relation between ${\Delta}Q$ and $B{\Delta}h/{\Delta}t$ was found. The discharges calculated from the relationship show differences by 10 % or less for the 7 observations out of 11 observations in 1997 whose stages exceeds 7 m. The observed discharges for the stages over 9 m in 1998 also show small difference with the discharges estimated from the loop rating curve. Looped rating curve is recommended, instead of the simple rating curve to reduce the errors of rated discharges for gauging stations like Hwawon, which has relatively large loop width.

Sediment Estimation of Large Reservoir Using Daily Flowrate Analysis (일유량 분석을 이용한 대규모 저수지의 퇴사량 추정)

  • 정재성
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.417-423
    • /
    • 1997
  • The objective of this study Is to supply basic data for large reservoir sedimentation research In future and make suggestions to maintain and opera능 the reservoir more of efficiently. At first, previous studios about the estimation of sediment yield rate were reviewed in Korea. And the discharge rating curves of upstream stage gauging stations and the correlation between dam Inflow and stage discharge were analyzed. With the analysis results, the spec유c sediment rate of Soyanggang dam was estimated as 608 m3/km2/yr. It was similar to that of Soyanggang dam feasibility study and 1994's field surveys of the reservoir than that of 1983's field surveys. Because the sediment rating curves were derived under the low discharge conditions, It needs to be checked under the flood conditions. However, the suggested methods such as flowrate analysis and sediment estimation will be useful to the sediment studios In future. Key words . reservoir sediment, sediment yield rate, rating curve, flowrate analysis.

  • PDF

Operation of Seom River Experimental Watershed in 2007 (2007년 섬강 시험 유역의 운영)

  • Lee, Min-Ho;Choi, Hung-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.699-702
    • /
    • 2008
  • In this study, it has observed the precipitation and stage data at each point every ten minutes for gaining the sustainable, reliable and high-quality hydrological data through operating the experimental watershed in mountainous areas such as Gyecheon located in the upstream of Seom river that is the tributary of Nam-Han river. And it has regularly surveyed the runoff and verified the reliability of data using the uncertainty analysis at the gaging station. So, this study has developed the stage-discharge curve(rating curve) and these results are expected to be used as fundamental data for analyzing the circulation of water through surveying evapotranspiration, soil moisture and level of groundwater in watershed.

  • PDF

Uncertainty Analysis of Stage-Discharge Curve Using Bayesian and Bootstrap Methods (Bayesian과 Bootstrap 방법을 이용한 수위-유량 관계곡선의 불확실성 분석)

  • Lim, Jonghun;Kwon, Hyungsoo;Joo, Hongjun;Wang, Won-joon;Lee, Jongso;You, Younghoon;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.114-124
    • /
    • 2019
  • The objective of this study is to reduce the uncertainty of the river discharge estimation method using the stage-discharge relation curve. It is necessary to consider the quantitative and accurate estimation method because the river discharge data is essential data for hydrological interpretation and water resource management. For this purpose, the parameters estimated by Bayesian and Bootstrap methods are compared with the ones obtained by stage-discharge relation curve. In addition, the Bayesian and Bootstrap methods are applied to assess uncertainty and then those are compared with the confidence intervals of the results from standard error method which has t-distribution. From the results of this study, The estimated value of the regression analysis developed through this study is less than 1 ~ 5%. Also It is confirmed that there are some areas where the applicability is better than the existing one according to the water level at each point. Therefore, if we use more suitable method according to the river characteristics, we could obtain more reliable discharge with less uncertainty.

A Study on the Estimation of Discharge in Unsteady Condition by Using the Entropy Concept (엔트로피 개념에 의한 부정류 유량 산정에 관한 연구)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6159-6166
    • /
    • 2012
  • A discharge measurement is difficult in flood season which is especially important in the water resources field and the continuous discharge measurement for all rivers is impossible on the present system. So, the stage-discharge curve has been used for a long time to produce discharge data of rivers. However, there has been problems from a reliability angle due to the fact that this method uses only stage-discharge relationship, although the stage-discharge curve has the convenience. Therefore, a new mean velocity equation was derived by using Chiu's 2D velocity formula of the entropy concept in this paper. The derived equation reflected hydraulic characteristics such as the depth, gravity acceleration, hydraulic radius, energy slope, kinematic coefficient of viscosity, etc. and estimated also a maximum velocity. In addition, this method verified the relationship between a mean and maximum velocity and estimates an equilibrium state ${\phi}(M)$ well presenting properties of a river cross section as the results. The mean velocity was estimated by using the equilibrium state ${\phi}(M)$, and then the discharge was estimated. To prove this equation to be accurate, the comparison between the measured and estimated discharge is conducted by using the measured laboratory data in the unsteady condition flow showing loop state and the results are consistent. If this study is constantly carried out by using various laboratory and river data, this method will be widely utilized in water resources field.

Analysis of Loop-Rating Curve in a Gravel and Rock-bed Mountain Stream (자갈 및 암반 하상 산지하천의 고리형 수위-유량 관계 분석)

  • Kim, Dong-Su;Yang, Sung-Kee;Yu, Kwon-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.853-860
    • /
    • 2012
  • It is well-known that loop effect of the stage-discharge relationship is formulated based on many field observations especially for the sand rivers. Theoretical understandings of the loop effect for the sand rivers have been widely provided, based on the facts that it is driven by the flood wave propagation and bed form changes over the given flood period. However, very few theoretical studies or field observations associated with loop-rating curves in the gravel or rock-bed mountain streams have been attempted so far, due particularly to the difficulties in the accurate discharge measurement during the flood in such field conditions. The present paper aims to report a unique loop-rating curve measured at a gravel and rock-bed mountain stream based on the flood discharge observation acquired during the typhoon, Muifa that passed nearby Jeju Island in summer of 2011. As velocity instrumentation, a non-intrusive Surface Velocity Doppler Radar to be suitable for the flood discharge measurement was utilized, and discharges were consecutively measured for every hour. Interestingly, the authors found that the hysteresis of the loop-rating curve was adverse compared to the typical trend of the sand bed streams, which means that the discharge of the rising limb is smaller than the falling limb at the same stage. We carefully speculate that the adverse trend of the loop-rating curve in the gravel bed was caused by the bed resistance change that works differently from the sand bed case.

A Study on the Prediction of Discharge by Estimating Optimum Parameter of Mean Velocity Equation (평균유속공식의 최적매개변수 산정에 의한 유량예측에 관한 연구)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5578-5586
    • /
    • 2012
  • The accurate estimation of discharge is very essential as the important factor of river design for the utilization and flood control, hydraulic construction design. The present discharge production is using the stage-discharge relationship curve in the river. The rating curve uses the method by predicting the discharge based on regression analysis using the measured stage and discharge data in a flood season. The method is comparatively convenient and has especially advantages in that it can predict the discharge having the difficulty of observation in a flood season. However, this method has basically room for improvement because the method only uses the relationship between stage and discharge, and doesn't reflect the hydraulic parameters such as hydraulic radius, energy slope, roughness, topography, etc.. Therefore, in this study, discharge was predicted using the convenient calculation method with empirical parameters of the Manning and Chezy equations, which were proposed by Choo et at (2011) in KSCE as a new methodology for estimating discharge in open channel. The proposed method can conveniently estimate empirical parameters in both of Manning and Chezy equations and the discharge is estimated in the open channels. There are proved by using data measured in meandering lab. channel and India canal and the accuracies show about determination coefficient 0.8. Accordingly, this method will be used in actual field if this study is continuously conducted.