• Title/Summary/Keyword: Stacks

Search Result 392, Processing Time 0.026 seconds

Quantitative Image Analysis of Fluorescence Image Stacks: Application to Cytoskeletal Proteins Organization in Tissue Engineering Constructs

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.103-113
    • /
    • 2019
  • Motivation: Polymerized actin-based cytoskeletal structures are crucial in shape, dynamics, and resilience of a cell. For example, dynamical actin-containing ruffles are located at leading edges of cells and have a significant impact on cell motility. Other filamentous actin (F-actin) bundles, called stress fibers, are essential in cell attachment and detachment. For this reason, their mechanistic understanding provides crucial information to solve practical problems related to cell interactions with materials in tissue engineering. Detecting and counting actin-based structures in a cellular ensemble is a fundamental first step. In this research, we suggest a new method to characterize F-actin wrapping fibers from confocal fluorescence image stacks. As fluorescently labeled F-actin often envelope the fibers, we first propose to segment these fibers by diminishing an energy based on maximum flow and minimum cut algorithm. The actual actin is detected through the use of bilateral filtering followed by a thresholding step. Later, concave actin bundles are detected through a graph-based procedure that actually determines if the considered actin filament is enclosing the fiber.

Analysis of AIGaAs/GaAs Depleted Optical Thyristor using bottom mirror (하부 거울층을 이용한 AIGaAs/GaAs 완전 공핍 광 싸이리스터 특성 분석)

  • Choi Woon-Kyiug;Kim Doo-Gun;Choi Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • We fabricate and analyze fully depleted optical thyristors (DOTs) using quarter wavelength reflector stacks (QWRS). QWRS are employed as bottom mirrors to enhance the emission efficiency as well as the optical sensitivity. In order to analyze their switching characteristics, S-shape nonlinear current-voltage curves are simulated and the reverse full-depletion voltages (Vneg's) of DOTs are obtained as function of semiconductor parameters by using a finite difference method (FDM). The fabricated DOTs show sufficient nonlinear s-shape I-V characteristics and switching voltage changes of these devices with and without bottom mirrors show 1.82 V and 1.52 V, respectively. Compared to a conventional DOT, this device with the bottom mirrors shows about 20% and 46% enhancement in switching voltage change and spontaneous emission efficiency, respectively.

The Characteristics of Mercury Emission from Municipal Solid Waste (MSW) Incinerator Stack (폐기물 소각시설 배가스에서의 수은 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.378-387
    • /
    • 2004
  • This study was carried to investigate the emission characteristics of mercury from domestic and industrial MSW (municipal solid waste) incinerator stacks. The mercury concentration levels of flue gas from 32 MSW incinerators stacks selected were above the criteria level ($5{\mu}g/S\;m^3$). MSWI facilities exceeding the criteria levels in Korea are due to the poor units comparison of combustion chamber(CC)-cyclone(CY)-stack. So, the mercury from MSW incinerators stack were suspected to contaminate the natural system unless the MSW incinerators were properly controlled. Mean-while, the relationship between mercury concentration and temperature of flue gas in MSW incinerator stacks were examined at two temperature ranges (Group A : $29.85{\sim}327.63^{\circ}C$, Group B : $446.9{\sim}848.15^{\circ}C$). The mercury concentration in flue gas with high temperature range was higher than that of flue gas with low temperature rage. This mean that the temperature of flue gas plays an important role in mercury control in MSW incinerator. The emission characteristics oi mercury was also evaluated by using the correlation matrix between the mercury and NOx, $PM_{10}$, moisture (MO.) at both low temperature and high temperature flue gas ranges. The mercury concentration was mainly affected by NOx, $PM_{10}$. moisture (MO.) at low temperature range, while the mercury concentration at high temperature flue gas was mainly affected by NOx, moisture (MO.). From these results, it was suggested that the temperature of cooling system and the air pollution control device should be properly regulated in order to control mercury of flue gas in MSWI incinerator.

Development and Performance Test of SOFC Co-generation System for RPG (SOFC를 이용한 가정용 열병합 발전시스템 개발 및 성능시험)

  • Lee, Tae-hee;Choi, Jin-Hyeok;Park, Tae-Sung;Choi, Ho-Yun;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.361-364
    • /
    • 2009
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 cells with $10{\times}10cm^2$ area and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water. Recently KEPRI developed stacks using $15{\times}15cm^2$ cells and tested them. KEPRI will develop a 5 kW class CHP system using $15{\times}15cm^2$ stacks by 2010.

  • PDF

Influence of Thermal Conductivity on the Thermal Behavior of Intermediate-Temperature Solid Oxide Fuel Cells

  • Aman, Nurul Ashikin Mohd Nazrul;Muchtar, Andanastuti;Rosli, Masli Irwan;Baharuddin, Nurul Akidah;Somalu, Mahendra Rao;Kalib, Noor Shieela
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.132-139
    • /
    • 2020
  • Solid oxide fuel cells (SOFCs) are among one of the promising technologies for efficient and clean energy. SOFCs offer several advantages over other types of fuel cells under relatively high temperatures (600℃ to 800℃). However, the thermal behavior of SOFC stacks at high operating temperatures is a serious issue in SOFC development because it can be associated with detrimental thermal stresses on the life span of the stacks. The thermal behavior of SOFC stacks can be influenced by operating or material properties. Therefore, this work aims to investigate the effects of the thermal conductivity of each component (anode, cathode, and electrolyte) on the thermal behavior of samarium-doped ceria-based SOFCs at intermediate temperatures. Computational fluid dynamics is used to simulate SOFC operation at 600℃. The temperature distributions and gradients of a single cell at 0.7 V under different thermal conductivity values are analyzed and discussed to determine their relationship. Simulations reveal that the influence of thermal conductivity is more remarkable for the anode and electrolyte than for the cathode. Increasing the thermal conductivity of the anode by 50% results in a 23% drop in the maximum thermal gradients. The results for the electrolyte are subtle, with a ~67% reduction in thermal conductivity that only results in an 8% reduction in the maximum temperature gradient. The effect of thermal conductivity on temperature gradient is important because it can be used to predict thermal stress generation.

Magnetization of the stack of HTS tapes

  • Osipov, M.A.;Abin, D.A.;Pokrovskiy, S.V.;Mineev, N.A.;Rudnev, I.A.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.21-24
    • /
    • 2015
  • New results of dependence of magnetic field, trapped by a stack of HTS tapes, on amount of tapes in a stack are reported. Commercial GdBCO tape 12 mm width and without Cu layer was used for the research. Tape was divided in square pieces $12{\times}12mm^2$ from which stacks were formed. Filling factor of the tape was about 1.4%. Measurements were carried out for stacks with height from 5 to 250 pieces and at wide temperature range from liquid helium to liquid nitrogen. Both FC (field cooling) and ZFC (zero field cooling) cooling methods were used in the research. These two methods show matching results with good accuracy. As a result dependences of trapped magnetic flux on amount of tapes for different temperatures were received. Research shows, that with increasing height of the stack trapped magnetic field value reach saturation at about 60 tapes in a stack for low temperatures. From 60 to 100 tapes increase of magnet flux is only 5%. Thus increase amount of tapes in a stack is not profitable. Also investigation of trapped magnet field relaxation was carried out. Relaxation speed decreases with increasing amount of elements. It means that the higher the stack is, the longer trapped flux will be held in cause of the same temperature.