Materials and Components for Fuel Cell Stacks

Go Young Moon*, Hyuk Nyun Kim

Fuel Cell Group/Battery Research & Development
Research Park, LG Chem, Ltd.
Daejeon, Korea

11월 8일, 2002

AGENDA

- > Introduction of Fuel Cell
- > Fuel Cell vs. Battery
- ➤ Fuel Cell Types
- ➤ Major Components in Fuel Cell
- ➤ What is MEA?
- ➤ How to Fabricate MEAs?
- > Some Important Reactions
- ➤ Membranes, Catalysts, Flow Fields

WHAT IS FUEL CELL?

A fuel cell is an electrochemical device, which converts chemical energy of hydrogen or methanol to electrical energy without combustion. Unlike a battery, a fuel cell will continuously produce electricity as long as fuel is supplied to it.

WHY FUEL CELL?

- ➤ High energy efficiency-35% to 75%
- No environmental intrusion Products: Hot water, CO₂, < 1 ppm No_x, < 10 ppm CO</p>
- > Direct energy conversion (no combustion)
- > No moving parts in the energy converter
- > Fuel flexibility
- Demonstrated endurance/reliability of lower temperature units
- > Remote/unattended operation
- > Size flexibility
- > Rapid load following capability

FUEL CELL VS. BATTERY

Cell Type	L (V)	i (mA/cm²)	Specific Energy (Wh/kg)	Energy Density (Wh/l)
Ni/Cd	1.2	0.1	70	200
Ni/MH	1.2	0.1	90	320
Li/LiCoO ₂	3.7	0.1	150	400
CH₃OH/O₂ DMFC	0.4	400	Min 320 (3450°)	686 _p (3000 _c)
H ₂ /Air PEMFC	0.7	600	100 (33,288˚)	765

^{*}Energy density of based on compressed hydrogen (34.5 Mpa)

*Saturated fuel at 0.5V

*Fuel energy density in 1:1 molar ratio with water

*3.6kW/l for gasoline engine, 1.4kW/l for diesel engine, 1.0kW/l for PEMFC, KRI (1997)

HOW TO FABRICATE MEA?

- > Spray coating
- ➤ Decal
- ➤ Tape casting
- ➤ Screen printing-plain
- ➤ Physical Vapor Deposition-sputtering
- > Roll coating-screen printing, power scattering
- > Flexographic printing, gravure printing

IMPORTANT REACTIONS

A Hydrophioddalon

2. Methanol oxidation

$$H_{2} \rightarrow 2H^{+} + 2e^{-}, E^{o} = 0 V$$

3. Oxygen reduction

$$2 Pt_{(s)} + H_2 \rightarrow Pt - H_{ads} + Pt - H_{ads}$$

$$Pt - H_{ads} \rightarrow H^+ + e^- + Pt_{(s)}$$

where Pt_(s) is a free surface site and Pt - H_{ads} is an adsorbed H - atom on the Pt active site.

IMPORTANT REACTIONS

1. Hydrogen oxidation

$$CH_3OH + H_2O \rightarrow CQ_2 + 6H^+ + 6e^-, E^0 = 0.046V$$

3. Oxygen reduction

Possible reaction scheme for methanol oxidation

Scheme of adsorption/deprotonation process

IMPORTANT REACTIONS

1. Hydrogen oxidation

LPP Weinshollskichter

3. Oxygen reduction

$$CH_3OH + H_2O \rightarrow CO_3 + 6H^+ + 6e^-, E^0 = 0.046V$$

Water gas shift reaction

$$Pt+H_2O \rightarrow PtOH + H^* + 1e^* + PtCO = 2Pt + CO_2 + H^* + 1e^*$$

$$0.2V$$

$$Ru + H_2O \rightarrow RuOH + H^* + 1e^* + PtCO = Ru + Pt + CO_2 + H^+ + 1e^*$$

IMPORTANT REACTIONS

- Hydrogen oxidation
- 2. Methanol oxidation

$$1/2 O_2 + 2H^+ + 2e^- \rightarrow H_2O$$

$$O_2 + Pt \rightarrow Pt - O_2$$

 $Pt - O_2 + H^+ + 1e^- \rightarrow Pt - HO_2$
 $Pt - HO_2 + Pt \underline{rds} Pt - OH + Pt - O$
 $Pt - OH + Pt - O + 3H^+ + 3e^- \rightarrow 2Pt + 2H_2O$

ION EXCHANGE MEMBRANES

> REQUIREMENTS

- > High proton conductivity
- > High/low water permeability
- > Low electro-osmotic drag
- > Fuel and oxygen barrier
- > Chemical stability
- Mechanical and dimensional stability

Hydrophilic (ionic) channel in hydrophobic matrix

ION EXCHANGE MEMBRANES

> Perfluoriated Ionomer Membranes

$$R - \left[-CF_{2} \right]_{X} CF_{2} + \left[CF_{2} \right]_{X} CF_{2} - \left[CF_{2} \right]_{M} CF_{2} - \left[CF_{2} \right]_{M} SO_{3}H$$

$$CF_{3} - \left[CF_{2} \right]_{M} SO_{3}H$$

Nafion 117 (DuPont)

m>1, n=2, x=5-13, y=1

Dow XUS (Dow)

m=0, n=2, x=3-10, y=1

Flemion (Asahi Glass) m=1, n=1-5

$$R \xrightarrow{CF_2 - CF_2} x \xrightarrow{CF_2 - CF_2} x \xrightarrow{CF_2 - CF_2} R_1$$

$$[O - CF_2 - CF_2]_{m} O \xrightarrow{CF_2} CF_2$$

Aciplex (Asahi Chemical)

m=1, n=2, x=6-8, y=0-1

NAFION

PerFluoroSulfonate Ionomer (PFSI) e.g. Nafion®

$$\begin{array}{c}
-\left(CF_2-CF_2\right)_{X} & \left(CF_2-CF\right)_{Y} \\
-\left(CF_2-CF_3\right)_{Y} & CF_2 \\
-\left(CF_2-CF_3\right)_{Y} & CF_2 \\
-\left(CF_2-CF_3\right)_{Y} & CF_2 \\
-\left(CF_2-CF_3\right)_{Y} & CF_2 \\
-\left(CF_2-CF_3\right)_{Y} & CF_3 \\
-\left(CF_3-CF_3\right)_{Y} & CF_3 \\
-\left(CF_3-CF_$$

- Copolymer of tetrafluoroethylene and perfluorinated vinylethersulfonylfluoride
- High ionic conductivity : 0.1 S/cm
- ➤ High water transport rate :2×10⁵ cm²/s
- Low voltage loss: 50 mV at 1A/cm²
- > Low gas permeability
- Excellent long term stability

ION EXCHANGE MEMBRANES

> Perfluoriated Ionomer Composite Membranes

- ➤ Incorporation of highly porous SiO₂ particles in Nafion; increase of water uptake → high temp.
- > Hydrolysis of TEOS, Zr(OBu)4 in Nafion
- Nafion with heteroolyacids (silicotungstic, phosphotungstic acids); increase of ionic conductivity

> Partially Fluoriated Ionomer Membranes

$$R - \left(CF_2CF\right)_m \left(CF_2CF\right)_n \left(CF_2CF\right)_p \left(CF_2CF\right)_q$$

$$A_1 \qquad A_2 \qquad A_3 \qquad SO_3H$$

BAM based on sulfonated α, β, β -trifluorostyrene-co-substituted- α, β, β -trifluorostyrenes

at least m=2, n,p,q are integers>0

 $\rm A_{1},\ A_{2},\ A_{3}\text{=}alkyls,\ halogens,\ O\text{-}R,\ CF\text{=}CF_{2},\ CN,\ NO_{3},\ OH$

ION EXCHANGE MEMBRANES

ETFE-g-PSSA, ethylenetetrafluoroethylene-g-polystyrene sulfonic acid

➤ PVDF-g-PSSA

Partially Sulfonated Arylene Membranes (Non-fluorinated Ionomer)

- > Sulfonation of thermally stable aromatic polymers
- > PEEK, PSf, PES, PI, PBI, PEI, PPS etc.
- > Styrene-co-ethylene-butadiene-co-styrene triblock copolymer
- > Their composites with inorganics

Polymer with Low MW Compounds

- > e.g., PBI with phosphoric acid or sulfuric acid
- > Sulfonated PEEK with amphoteric compounds such as imidazole or pyrazole

ION EXCHANGE MEMBRANES

$$R \longrightarrow \left(CH_2CH - CH_2CH\right) \longrightarrow \left(CH_2CH\right) \longrightarrow CH_2CH \longrightarrow \left(CH_2CH - CH_2CH\right) \longrightarrow R,$$

$$CH_2CH \longrightarrow CH_2CH$$

$$CH_2CH \longrightarrow CH_2CH$$

$$HO_2S$$

DAIS based on sulfonated SEBS (styrene-co-ethylene-butylene-co-styrene) triblock copolymers

WATER ISSUES OF MEMBRANES

- > Humidification required
 - ♦>~80 %RH
 - ◆water management system :FC system cost ↑
- Dimensional changes in membrane with water content
 - ◆ stresses at electrode/membrane interface and at the gasket
 - ◆electrode debonding from membrane
 - ◆buckling and cracking of carbon paper from shrinking membrane

- ➤ Electro-Osmotic drag (EOD)
 - ◆EOD increases with increasing T and water content
 - ◆anode humidification
 - ♦ low DMFC system efficiency
- Poor dynamic response of stack
- Need for faster diffusion of cathode water back to anode ⇒ thinner membrane
 - ◆manufacturing, fuel permeation, lifetime problem

How about conductivity without water?

HIGH TEMPERATURE OPERATION

In PEMFC, it means 100-200 °C rather than 60-80 °C

Advantages

- Better anode kinetics in the presence of CO
 - -Much simplified fuel processor
 - -Reduction in anode Pt content
- > Small heat exchanger
 - -Utilizing stack heat
 - -Rejecting stack heat
- ➤ Potential to eliminate water management system ⇒ many benefits

Nafion for HT

- Near-saturated water for conductivity
- Vapor pressure of water increase : 80 °C (7 psi) ⇒ 150 °C (69 psi)
- FC in high vapor pressure condition is unattractive : air compressors and water condensers
- Very short lifetime reported for fluoro ionomer at high temperature with high RH

Haile et al, CalTech

LIFETIME OF MEMBRANES

- ABB Membrel PEM electrolyser operated by SWB GmbH
- > 1.7 year operation at 400 A, 80 °C
 - -Pt catalyst on hydrogen side (cathode)
 - -Ru/Ir catalyst on oxygen side (anode)
- Nafion shows >50% thickness loss
- -SO₃H lost at same rate as thickness
- Fluoride detected in water effluent
- Erosion of membrane from hydrogen electrode side
- Most thinning near oxygen output end

J. Appl. Elect., 28(1998), 1041

ELECTRODE/MEMBRANE INTERFACE

- Traditionally, Nafion utilized as a binder and an ion conductor in MEA preparation
 - -Forms three phase interface to Nafion membrane
 - -lonic contact resistance minimal
- > New sulfonated aromatic membranes
 - -High ionic contact resistance between Nafion based electrodes and aromatic membranes
 - -Desirable for the electrode ion-conductor be the same as the membrane? ⇒ New catalyst ink formulation must be developed
- ➤ However, PBI/H₃PO₄ is good O₂ barrier : Do not use in cathode
- Desirable for the membrane surfaces be compatible with catalyst binder/electrodes

DMFC & METHANOL CROSSOVER

- > Advantages over PEMFC
 - > Simpler than a reformer system
 - ➤ Good thermal control of stack
- ➤ Simpler stack design
- ➤ Lower temperature operation compared to a reformer
- Capable of ambient temperature start-up
- ➤ Higher potential in terms of power density compared to the energy density of DMFC

- > Implications of Methanol Crossover
- ➤ Parasitic fuel loss; 20%
- ➤ Lower cell voltage by 0.1V
- ➤ Increased Air demand, polarizing cathode
- > Reduction of efficiency

 $CH_3OH + 3/2O_2 \rightarrow CO_2 + 2H_2O$

CATALYST

- Catalyst
 - ightharpoonupAnode (oxidation of H_2 or CH_3OH) : Pt/C (0.1-3 mg/cm²) for PEM, Pt-Ru/C (1-4 mg/cm²) for DM
 - ➤ Cathode (reduction of O₂): Pt/C
- > Catalyst formulation
 - ≽Wet
 - **>**Slurry
 - ≻Dry

TEM

20 % Pt/C

60 % Pt-Ru/0

GAS DIFFUSION LAYER

> Electrode consists of Gas diffusion layer, Catalyst, Binder

➤ Gas Diffusion Layer

Porous conductive carbon-based materials such as carbon cloth and carbon paper with a layer of carbon powder bonded to it

FLOW FIELD MATERIALS

- ➤ Graphite
- > Stainless steel
- ➤ Polymer composites
- ➤ Micro machining
- ➤ Dry etching
- ➤ Molding

Nissinbo, Japan, flexible graphite, 250 μm

Graftech Inc's flexible graphite for Ballard Mark 901

FUEL CELLS: The Disruptive Technology

Disruptive technologies typically enable new markets to emergy...companies entering these emerging markets early have significant first-mover advantages -Clayton Christensen, Harvard Business School-