Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00276

Influence of Thermal Conductivity on the Thermal Behavior of Intermediate-Temperature Solid Oxide Fuel Cells  

Aman, Nurul Ashikin Mohd Nazrul (Fuel Cell Institute, Universiti Kebangsaan Malaysia)
Muchtar, Andanastuti (Fuel Cell Institute, Universiti Kebangsaan Malaysia)
Rosli, Masli Irwan (Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia)
Baharuddin, Nurul Akidah (Fuel Cell Institute, Universiti Kebangsaan Malaysia)
Somalu, Mahendra Rao (Fuel Cell Institute, Universiti Kebangsaan Malaysia)
Kalib, Noor Shieela (Fuel Cell Institute, Universiti Kebangsaan Malaysia)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.2, 2020 , pp. 132-139 More about this Journal
Abstract
Solid oxide fuel cells (SOFCs) are among one of the promising technologies for efficient and clean energy. SOFCs offer several advantages over other types of fuel cells under relatively high temperatures (600℃ to 800℃). However, the thermal behavior of SOFC stacks at high operating temperatures is a serious issue in SOFC development because it can be associated with detrimental thermal stresses on the life span of the stacks. The thermal behavior of SOFC stacks can be influenced by operating or material properties. Therefore, this work aims to investigate the effects of the thermal conductivity of each component (anode, cathode, and electrolyte) on the thermal behavior of samarium-doped ceria-based SOFCs at intermediate temperatures. Computational fluid dynamics is used to simulate SOFC operation at 600℃. The temperature distributions and gradients of a single cell at 0.7 V under different thermal conductivity values are analyzed and discussed to determine their relationship. Simulations reveal that the influence of thermal conductivity is more remarkable for the anode and electrolyte than for the cathode. Increasing the thermal conductivity of the anode by 50% results in a 23% drop in the maximum thermal gradients. The results for the electrolyte are subtle, with a ~67% reduction in thermal conductivity that only results in an 8% reduction in the maximum temperature gradient. The effect of thermal conductivity on temperature gradient is important because it can be used to predict thermal stress generation.
Keywords
Computational Fluid Dynamics; Modeling; SOFC; Thermal Conductivity; Thermal Behavior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. L. Wan, W. Pan, Z. X. Qu, and Y. X. Qin, Key Eng. Mater., 2007, 336-338, 1773-1775.   DOI
2 Y.-C. Shin, S. Hashimoto, K. Yashiro, K. Amezawa, and T. Kawada, ECS Trans., 2016, 72(7), 105-110.   DOI
3 K. Yuan, Y. Ji, and J. N. Chung, J. Power Sources, 2009, 194(2), 908-919.   DOI
4 A. Amiri et al., Int. J. Hydrogen Energy, 2016, 41(4), 2919-2930.   DOI
5 J. B. Robinson et al., J. Power Sources, 2015, 288, 473-481.   DOI
6 A. A. Kulikovsky, Int. J. Hydrogen Energy, 2010, 35(1), 308-312.   DOI
7 M. Anwar, A. Muchtar, and M. R. Somalu, Int. J. Appl. Eng. Res., 2016, 11(19), 973-4562.
8 Z. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, and S. A. Barnett, Energy Environ. Sci., 2016, 9(5),1602-1644.   DOI
9 S. A. Muhammed Ali, M. Anwar, N. F. Raduwan, A. Muchtar, and M. R. Somalu, J. Sol-Gel Sci. Technol., 2018, 86(2), 1-12.   DOI
10 L. S. Mahmud, A. Muchtar, and M. R. Somalu, Renew. Sustain. Energy Rev., 2017, 72, 105-116.   DOI
11 N. A. Baharuddin, A. Muchtar, and D. Panuh, J. Kejuruter., 2018, SI 1(2), 1-8.
12 M. Peksen, Prog. Energy Combust. Sci., 2015, 48, 1-20.   DOI
13 N. Mahato, S. Sharma, A. K. Keshri, A. Simpson, A. Agarwal, and K. Balani, J. Mater. Met. Mater. Soc., 2013, 65(6), 749-762.   DOI
14 N. S. Kalib, A. Muchtar, M. R. Somalu, A. K. A. Mohd Ihsan, and N. A. Mohd Nazrul Aman, J. Adv. Res. Fluid Mech. Therm. Sci., 2018, 50(2), 146-152.
15 T. Choudhary and Sanjay, Int. J. Hydrogen Energy, 2016, 41(24), 10212-10227.   DOI
16 M. Xu, T. Li, M. Yang, and M. Andersson, Sci. Bull., 2016, 61(17), 1333-1344.   DOI
17 A. Yahya, R. Rabhi, H. Dhahri, and K. Slimi, Powder Technol., 2018, 338, 402-415.   DOI
18 E. Guk, J. S. Kim, M. Ranaweera, V. Venkatesan, and L. Jackson, Appl. Energy, 2018, 230, 551-562.   DOI
19 M. Andersson, J. Yuan, and B. Sunden, Int. J. Heat Mass Transf., 2012, 55(4), 773-788.   DOI
20 G. Yang, D. Yue, H. Li, and X. Lv, International Conference on Advances in Energy Engineering, ICAEE 2010, 2010,(2), 325-328.
21 C. Yang, J. G. Cheng, H. G. He, and J. F. Gao, Key Eng. Mater., 2010, 434-435(3), 731-734.   DOI
22 S. A. Muhammed Ali, A. Muchtar, A. Bakar Sulong, N. Muhamad, and E. Herianto Majlan, Ceram. Int., 2013, 39(5), 5813-5820.   DOI
23 P. A. Ramakrishna, S. Yang, and C. H. Sohn, J. Power Sources, 2006, 158(1), 378-384.   DOI
24 D. Cui, Q. Liu, and F. Chen, J. Power Sources, 2010, 195(13), 4160-4167.   DOI
25 D. Saebea, S. Authayanun, Y. Patcharavorachot, and A. Arpornwichanop, Chem. Eng. Trans., 2016, 52, 223-228.
26 P. Aguiar, C. S. Adjiman, and N. P. Brandon, J. Power Sources, 2004, 138(1-2), 138, 120-136.   DOI
27 M. Navasa, J. Yuan, and B. Sunden, Appl. Energy, 2015, 137, 867-876.   DOI
28 T. Suther, A. Fung, M. Koksal, and F. Zabihian, Sustainability, 2010, 2(11), 3549-3560.   DOI