• Title/Summary/Keyword: Stacking method

Search Result 477, Processing Time 0.028 seconds

Laminating Rule for Predicting the Dielectric Properties of the E-glass/Epoxy Laminate Composite (유리섬유/에폭시 복합재료 적층판의 유전성질 예측을 위한 적층판 법칙)

  • Chin, Woo-Seok;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.141-145
    • /
    • 2005
  • Since the electromagnetic properties of fiber reinforced polymeric laminate composite can be tailored effectively by adjusting its composition and regulating the stacking sequence, it is plausible material for fabricating the radar absorbing structures (RAS) of desired performance. In order to design the effective electromagnetic wave (EM) absorber with the fiber reinforced polymeric laminate composite, its electromagnetic characteristics should be available and could be regulated easily in the target frequency bands. In this study, dielectric characteristics of the E-glass/epoxy laminate composites were measured by the free space method in the X-band frequency range ($8.2\;{\sim}\;12.4\;GHz$). In order to describe the dielectric behavior of laminate composites of arbitrary stacking sequences, the equivalent circuit model and the laminating equations for estimating dielectric properties were proposed, and experimentally verified. From the comparison of the predicted and measured data, the proposed method predicted well the experimentally measured data.

  • PDF

The Estimation of Fatigue Life for Al/CFRP Hybrid Laminated Composites using the Strain-Life Method (변형률-수명 평가기법을 이용한 Al/CFRP 하이브리드 적층 복합재의 피로수명 측정)

  • Yang, Seong Jin;Kwon, Oh Heon;Jeon, Sang Koo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.7-14
    • /
    • 2021
  • Hybrid laminated Al/carbon-fiber-reinforced plastic (CFRP) composites are attracting considerable attention from industries such as aerospace and automobiles owing to their excellent specific strength and specific rigidity. However, when this material is used to fabricate high-pressure fuel storage containers subjected to repeated fatigue loads, fatigue life evaluation for the working load is regulated as an important criterion for operational safety and ease of maintenance. Among the existing evaluation methods for these vessels, the burst test and the hydraulic repeat test require expensive facilities. Thus, the present study aims to develop an improved fatigue life test for Al/CFRP laminated hybrid composites. The test specimen was manufactured using a curved mold considering the shape of a type III high-pressure storage container. The strain-life method was used for fatigue life evaluation, and the life was predicted based on the transition life. The results indicate that the more complex the CFRP stacking sequence, the longer is the transition life. This test method is expected to be useful for ensuring the fatigue safety and economy of hybrid laminate composites.

A Study on Classification of Variant Malware Family Based on ResNet-Variational AutoEncoder (ResNet-Variational AutoEncoder기반 변종 악성코드 패밀리 분류 연구)

  • Lee, Young-jeon;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Traditionally, most malicious codes have been analyzed using feature information extracted by domain experts. However, this feature-based analysis method depends on the analyst's capabilities and has limitations in detecting variant malicious codes that have modified existing malicious codes. In this study, we propose a ResNet-Variational AutoEncder-based variant malware classification method that can classify a family of variant malware without domain expert intervention. The Variational AutoEncoder network has the characteristics of creating new data within a normal distribution and understanding the characteristics of the data well in the learning process of training data provided as input values. In this study, important features of malicious code could be extracted by extracting latent variables in the learning process of Variational AutoEncoder. In addition, transfer learning was performed to better learn the characteristics of the training data and increase the efficiency of learning. The learning parameters of the ResNet-152 model pre-trained with the ImageNet Dataset were transferred to the learning parameters of the Encoder Network. The ResNet-Variational AutoEncoder that performed transfer learning showed higher performance than the existing Variational AutoEncoder and provided learning efficiency. Meanwhile, an ensemble model, Stacking Classifier, was used as a method for classifying variant malicious codes. As a result of learning the Stacking Classifier based on the characteristic data of the variant malware extracted by the Encoder Network of the ResNet-VAE model, an accuracy of 98.66% and an F1-Score of 98.68 were obtained.

Failure Strength of the Composite Mechanical Joint according to the Stacking Angle (적층각 변화에 따른 복합재료 기계적 체결부의 파손강도)

  • Jo, Dae-Hyeon;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2017
  • Generally, joints are the weakest part in the composite structures. Composite joints can be classified into adhesive joints and mechanical joints, and mechanical joints are mainly used in areas less sensitive to environmental conditions. In this paper, the failure loads of composite mechanical joints with five different stacking angles are tested and predicted. Finite element analysis of mechanical joints were performed and failure loads were predicted by the FAI(Failure Area Index) method using Tsai-Wu and Yamada-Sun failure criteria, and the predicted failure loads were compared with experimental results. From the experiment and analysis, the failure loads of the mechanical joints were decreased as the ratio of 0 degree layer was low and they could be predicted within 13.03% using the FAI method and Yamada-Sun failure criteria.

Dynamic analysis of a laminated composite beam under harmonic load

  • Akbas, S.D.
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.563-573
    • /
    • 2020
  • Dynamic responses of a laminated composite cantilever beam under a harmonic are investigated in this study. The governing equations of problem are derived by using the Lagrange procedure. The Timoshenko beam theory is considered and the Ritz method is implemented in the solution of the problem. The algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of dynamic problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of load parameter, the fiber orientation angles and stacking sequence of laminas on the dynamic responses of the laminated beam are investigated.

Design parameters on the fatigue characteristics of a co-cured double lap joint (양면겹치기 동시경화조인트의 피로특성에 영향을 미치는 설계변수에 관한 연구)

  • 신금철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.5-8
    • /
    • 2002
  • The use of the co-cured joining method for composite structures is attractive due to several benefits. However, since the design stress level in cyclic loads is often smaller than the joint strength obtained from the static tensile load test, it is important to establish proper fatigue design criteria. Although some researchers have reported on co-cured joints, there are only a few papers published on the fatigue characteristics of co-cured joints. In this paper, the effect of bond parameters on the fatigue characteristics of a steel-composite co-cured double lap joint under cyclic tensile loads was experimentally investigated. We considered the surface roughness of the steel adherend and the stacking sequence of the composite adherend as bond parameters. A fatigue failure mechanism of the co-cured double lap joint was explained systematically by investigating the surfaces of failed specimens.

  • PDF

A Study on Development of ATCS for Automated Stacking Crane using Neural Network Predictive Control

  • Sohn, Dong-Seop;Kim, Sang-Ki;Min, Jeong-Tak;Lee, Jin-Woo;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.346-349
    • /
    • 2003
  • For a traveling crane, various control methods such as neural network predictive control and TDOFPID(Two Degree of Freedom Proportional Integral Derivative) are studied. So in this paper, we proposed improved navigation method to reduce transfer time and sway with anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the NNPPID(Neural Network Predictive PID) controller to control the precise move and speedy navigation. The proposed predictive control system is composed of the neural network predictor, TDOFPID controller, and neural network self-tuner. We analyzed ASC(Automated Stacking Crane) system and showed some computer simulations to prove excellence of the proposed controller than other conventional controllers.

  • PDF

Low-Velocity Impact Analyses of Isotropic and Anisotropic Materials by the Finite Element Method (유한요소법에 의한 등방성과 이방성 재료의 저속 충격 해석)

  • 안국찬;박형렬
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • The purpose of this research is to analyze the impact resposes(impulsive stress and strain etc.) of anisotropic materials subjected to the low-velocity impact. For this purpose, a beam finite element program based on modified higher-order beam theory for anisotropic materials are developed and used to simulate the dynamic behaviors [contact force, displacement of ball and target, strain(stress) response histories] according to the changes of material property, stacking sequence, velocity and dimension etc.. Test materials for simulation are composed of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s} and [90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{2s}$ stacking sequences. Finally, the results of this simulation are compared with those of wave propagation theory and then the impact responses and wave propagation phenomena are investigated.

  • PDF

Geometrically nonlinear analysis of thin-walled open-section composite beams

  • Vo, Thuc Phuong;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.113-118
    • /
    • 2008
  • This paper presents a flexural-torsional analysis of thin-walled open-section composite beams. A general geometrically nonlinear model for thin-walled composite beams and general laminate stacking sequences is given by using systematic variational formulation based on the classical lamination theory. The nonlinear algebraic equations of present theory are linearized and solved by means of an incremental Newton-Raphson method. Based on the analytical model, a displacement-based one-dimensional finite element model is developed to formulate the problem. Numerical results are obtained for thin-walled composite beams under general loadings, addressing the effects of fiber angle, laminate stacking sequence and loading parameters.

  • PDF

Influence of Couplings on the Buckling Behavior of Composite Laminates with a Delamination (층간분리로 인한 연계강성이 복합재 적층판의 좌굴거동에 미치는 영향)

  • 김효진;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.354-362
    • /
    • 1995
  • The finite element modeling is used to study the buckling and postbuckling behavior of composite laminates with an embedded delamination. Degenerated shell element and rigid beam element are utilized for the finite element modeling. In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piola-Kirchhoff stress tensor and the Green strain tensor is used. The buckling and postbuckling behavior of composite laminates with a delamination are investigated for various delamination sizes, stacking sequences, and boundary conditions. It is shown that the buckling load and postbuckling behavior of composite laminates depend on the buckling model which is determined by the delamination size, stacking sequence and boundary condition. Also, results show that introduction of couplings can reduce greatly the buckling load.