• Title/Summary/Keyword: Stacking Sequences

Search Result 136, Processing Time 0.023 seconds

Study on the Orthogonal Stiffening Characteristics for the Natural Frequencies and Buckling Loads of the Composite Laminated Cylindrical Shells (복합재료원통셸의 고유진동수 및 좌국하중에 대한 직교보강 특성 연구)

  • 이영신;김영완
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.457-467
    • /
    • 1996
  • The analytical solutions for the free vibration and buckling of cross -ply laminated composite cylindrical shell with the orthogonal stiffeners, i. e., axial stiffeners(stringers) and circumferential stiffeners(rings), are presented using the energy method. The stiffeners are assumed to be an integral part of the shell and have been directly included in analysis(it's called discrete stiffener theory). The effect of the parameters such as the stacking sequences, the shell thickness, the shell length-to-radius ratio are studied. By comparison with the previously published analytical results for the stiffened cylindrical shells, it is shown that natural frequencies can be determined with adequate accuracy.

  • PDF

Buckling load optimization of laminated plates via artificial bee colony algorithm

  • Topal, Umut;Ozturk, Hasan Tahsin
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.755-765
    • /
    • 2014
  • In this present work, Artificial Bee Colony Algorithm (ABCA) is used to optimize the stacking sequences of simply supported antisymmetric laminated composite plates with criticial buckling load as the objective functions. The fibre orientations of the layers are selected as the optimization design variables with the aim to find the optimal laminated plates. In order to perform the optimization based on the ABCA, a special code is written in MATLAB software environment. Several numerical examples are presented to illustrate this optimization algorithm for different plate aspect ratios, number of layers and load ratios.

Analytical Algorithm Predicting Compressive Stress-Strain Relationship for Concrete Confined with Laminated Carbon Fiber Sheets

  • Lee, Sang-Ho;Kim, Hyo-Jin
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2001
  • An analytical compressive stress-strain relationship model for circular and rectangular concrete specimens confined with laminated carbon fiber sheets (CFS) is studied. Tsai-Hill and Tsai-Wu failure criteria were used to implement orthotropic behavior of laminated composite materials. By using these criteria, an algorithm which analyzes the confinement effect of CFS on concrete was developed. The proposed analytical model was verified through the comparison with experimental data. Various parameters such as concrete strength, ply angle, laminate thickness, section shape, and ply stacking sequences were investigated. Numerical results by the proposed model effectively simulate the experimental compressive stress-strain behavior of CFS confined concrete specimens. Also, the pro-posed model estimates the compressive strength of the specimen to a high degree of accuracy.

  • PDF

The Impact Response and Impact Stress of Glass/Epoxy Laminated Composite Plates (Glass/Epoxy 적층 복합판의 충격 응답 및 충격 응력)

  • Kim, Moon-Saeng;Kim, Nam-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.29-39
    • /
    • 1990
  • The purpose of this research is to analyze the impact behaviors of laminated composite plates subjected to the transverse low-velocity impact by the steel ball. A plate finite element model based on Whitney and Pagano's the first-order shear deformation theory (FSDT) in conjunction with experimental static contact laws is formulated and then compared with the results of the impact experiments. Because the input data and the output data printed at every integration time step are lots of amount, these are interactively poecessed by the developed pre-processor(PREPLOT) and postprecessor(POSTPLOT). All results from these procesors are automatically generated by CALCOMP plotter. Test materials are glass/expoxy composite materials. The specimens are composed of [$0^{\circ} /45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}/]2s\ and \[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}/$]2s stacking sequences and have $4.5^t{\times}200^w{\times}200^l$(mm) and $4.5^t{\times}300^w{\times}300^l$(mm) dimensions.

  • PDF

A New and Efficient C0 Laminated Curved Beam Element (효율적인 C0 적층 곡선보 요소의 개발)

  • Kim, Jin-Gon;Kang, Sang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.559-566
    • /
    • 2003
  • In this study, we present a new highly accurate two-dimensional curved composite beam element. The present element, which is based on the Hellinger-Reissner variational principle and classical lamination theory, employs consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees to resolve the numerical difficulties due to the spurious constraints. The stress parameters are eliminated and the nodeless degrees are condensed out to obtain the (9x9) element stiffness matrix. It should be noted that the stacking sequences without transverse deformation to the load plane makes a two dimensional analysis of curved composite beams practically useful . Several numerical examples confirm the superior locking-free behavior of the present higher-order laminated curved beam element.

A Study of Vibration Characteristics of Cylindrical Composite Shells Manufactured in Present Laboratory (간이 성형장치에 의해 제작된 복합재 원통셸의 진동특성평가)

  • 한병기;유택인;이성희;이재원
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.37-46
    • /
    • 1999
  • In this study, the vibration analysis and modal tests of cylindrical composite shells which are manufactured with various stacking sequences in present laboratory were conducted under the free-free and clamped-clamped boundary conditions. Natural frequencies and mode shapes of these specimens were experimentally obtained and their results are compared with theoretical and FEM results. Both results are in good agreement, which confirm the usefulness of proposed manufacturing method for cylindrical composite shells.

  • PDF

Warping thermal deformation constraint for optimization of a blade stiffened composite panel using GA

  • Todoroki, Akira;Ozawa, Takumi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.334-340
    • /
    • 2013
  • This paper deals with the optimization of blade stiffened composite panels. The main objective of the research is to make response surfaces for the constraints. The response surface for warping thermal deformation was previously made for a fixed dimension composite structure. In this study, the dimensions of the blade stiffener were treated as design variables. This meant that a new response surface technique was required for the constraints. For the response surfaces, the lamination parameters, linear thermal expansions and dimensions of the structures were used as variables. A genetic algorithm was adopted as an optimizer, and an optimal result, which satisfied two constraints, was obtained. As a result, a new response surface was obtained, for predicting warping thermal deformation.

Free Vibration Analysis of Cantilevered Composite and Hybrid Composite Triangular Plates (외팔형 복합재료 및 혼합적층 삼각판의 자유진동 해석)

  • 이영신;최명환
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.259-269
    • /
    • 1993
  • For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. This study presents the experimental and FEM results for the free vibration of cantilevered, symmetrically and antisymmetrically laminated composite triangular plates. The natural frequencies and nodal patterns of a number of CFRP, GFRP, composite-Aluminum and CFRP-GFRP hybrid composite plates are experimentally obtained. A method for the determination of the Young's modulus and test procedures are described. The natural frequencies are determined for a wide range of parameters: e.g., composite material constants, fiber angles and stacking sequences. Natural frequency and nondimensional frequency parameter results are compared with the finite element analysis and existing literatures. Agreement between experimental and calculated frequencies is excellent.

  • PDF

Parametric study on design of sandwich structures composing of fibre reinfoced composites, polymer foam and resin concrete (섬유강화 복합재료, 고분자 포움 및 레진 콘크리트로 구성된 샌드위치 구조 설계를 위한 파라메트릭 연구)

  • Kim D.I.;Chang S.H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.429-434
    • /
    • 2005
  • In this paper sandwich structures like beams and plates are optimised by using parametric study. The structures are composed of fibre reinforced composites for facial material and resin concrete and PVC foam for core materials. The stacking sequences and thickness of the composites are controlled as major parameters to find out the optimal condition for machine tool components. For the plate structure for machine tool bed composites-skined sandwich structure which has several ribs are proposed to enhance both directional bending stiffnesses at the same time. From the results optimal configuration and materials for high precesion machine tools are proposed.

  • PDF

A Study on the Vibration Characteristics of Laminated Composite Rectangular Plate using ANSYS (ANSYS를 이용한 복합 적층 사각판의 진동특성에 관한 연구)

  • 이기형
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.37-44
    • /
    • 1997
  • Composite materials have various complicated characteristics depending on the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analyze composite materials. For efficient use of composite materials in engineering applications, the dynamic behavior such as natural frequencies and nodal patterns should be identified. This study presents FEM results for the free vibration of symmetrically and antisymmetrically laminated composite and hybrid composite rectangular plates. The natural frequencies of laminated composite rectangular plates having the various boundary conditions (completely clamped, 2-edge clamped, cantilevered) are experimentally obtained. In order to demonstrate the validity of the experiment, FEM analysis using ANSYS was performed and natural frequencies experimentally obtained is compared with that calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.

  • PDF