• Title/Summary/Keyword: Stack voltage

Search Result 246, Processing Time 0.026 seconds

Design and Fabrication Process Effects on Electrical Properties in High Capacitance Multilayer Ceramic Capacitor (고용량 적층 세라믹 커패시터에서 설계 및 제조공정에 따른 전기적 특성 평가)

  • Yoon, Jung-Rag;Woo, Byong-Chul;Lee, Heun-Young;Lee, Serk-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.118-123
    • /
    • 2007
  • The purpose of this work was to investigate the design and fabrication process effects on electrical properties in high capacitance multilayer ceramic capacitor (MLCC) with nickel electrode. Dielectric breakdown voltage and insulation resistance value were decreased with increasing stack layer number, but dielectric constant and capacitance were increased. With increasing green sheet thickness, dielectric breakdown voltage, C-V and I-V properties were also increased. The major reasons of the effects were thought to be the defects generated extrinsically during fabrication process and interfacial reactions formed between nickel electrode and dielectric layer. These investigations clearly showed the influence of both green sheet thick ness and stack layer number on the electrical properties in fabricating the MLCC.

Effect of Operating Conditions on Cold Startup of PEMFC Stack (운전조건에 따른 PEMFC 스택 냉시동 특성 연구)

  • Ko, Jae-Jun;Lee, Jong-Hyun;Kim, Sae-Hoon;Ahn, Byung-Ki;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.224-231
    • /
    • 2009
  • The improvement of cold start capability is one of the most challenging tasks to be solved for commercialization of fuel cell vehicle. In this study, cold start test and ice blocking test(IBT) of fuel cell stack were carried out under various operating conditions. This fuel cell stack can be thawed from -20$^{\circ}$C within 25s and the voltage change was found to be comprised of 4 steps; the first step is the voltage decrease by overpotential, the second step is the voltage increase by the cell temperature increase, the third step is the voltage decrease by ice blocking, and the last step is the voltage increase by thawing. Bootstrap startup was failed after shutdown at temperature under 40$^{\circ}$C because of much condensed water in the fuel cell. Quantitative estimation of cold start capability have been demonstrated by ice blocking test(IBT). In the results, it was found that cold start capability was improved double every 10$^{\circ}$C from 30$^{\circ}$C to 65$^{\circ}$C and enhanced by 30% at the condition of SR 3/4 compared to SR 1.5/2.0 and enhanced by 20% with dry purge condition compared to with RH 50% purge condition.

MEMS-based Direct Methanol Fuel Cells and Their Stacks for the Reduction of Cell-to-Cell Deviation and Interconnection Voltage Drop (단위 셀간 성능편차 및 접속접안 강하 초소화를 위한 극소형 직접메탄올 연료전지 스택의 설계 및 제작)

  • Seo, Young-Ho;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.981-985
    • /
    • 2007
  • We present a MEMS-based portable Direct Methanol Fuel Cell (micro-DFMC), featured by a platinum sputtered microcolumn electrode and a built-in fuel chamber containing a limited amount of methanol fuel. Also presented is a micro-DMFC stack structure having a common electrolyte sandwiched by the microcolumn electrodes. The single cells with ME16 and PE16 electrodes show the maximum power densities of $31.04{\pm}0.29{\mu}W/cm^2$ and $9.75{\pm}0.29{\mu}W/cm^2$, respectively; thus indicating the microcolumn electrode (ME16) generates the power density (3.2 times) higher than the planar electrode (PE16). The single cell tests of ME16 and ME4 electrodes (Fig.8) show the maximum power of $31.04{\pm}0.29{\mu}W/cm^2$, and $25.23{\pm}2.7{\mu}W/cm^2$, respectively; thus demonstrating the increased window frame reduces the normalized standard power deviation (standard deviation over the average power). The normalized deviation of 0.11 in ME4 cell has been reduced to 0.01 in ME16 cell due to the increased window frames. The maximum power density of 4-cell stack is 15.7 times higher than that of the single cell. 4-cell stack produces the power capacity of 20.3mWh/g during 980min operation at the voltage of 450mV with the load resistance of $800{\Omega}$.

Operating Method to Maximize Life Time of 5 kW High Temperature Polymer Exchange Membrane Fuel Cell Stack (5 kW 고온 고분자연료전지 스택 수명 극대화를 위한 운전 방법론)

  • KIM, JIHUN;KIM, MINJIN;SOHN, YOUNG-JUN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.144-154
    • /
    • 2016
  • HT-PEMFC (high temperature polymer electrolyte membrane fuel cell) using PA (phosphoric acid) doped PBI (polybenzimidazole) membrane has been researched for extending the lifetime. However, the existing work on durability of HT-PEMFC focuses on identifying degradation causes of lab scale. The short life time of HT-PEMFC is still the problem for its commercialization. In this paper, an operating method to maximize life time of 5kW HT-PEMFC stack are proposed. The proposed method includes major steps such as minimization of OCV (Open Circuit Voltage) exposure, control of the proper stack temperature, and N2 purging for the stack. This long life operating method was based on the fragmentary results of degradation from previous research works. Experimentally, the 5 kW homemade HT-PEMFC stack was operated for a long time based on the proposed method and the stack successfully can operate within the desired degradation rate for the target life time.

The Stack Design Considering The Reactive Power Supply of Grid-Connected Inverter (계통 연계형 인버터의 무효전력 공급을 고려한 Stack 설계)

  • Koh, Kwang-Soo;Oh, Pil-Kyoung;Kim, Hee-Jung;Kim, Young-Min
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.453-454
    • /
    • 2016
  • The ESS(Energy Storage System) connected with distributed generation is drawing attention due to improving the quality load leveling, peak shaving for enhancing reliability of the power grid. The grid-connected inverter makes frequency adjustment to the active power's charge discharge according to the load variation. In addition, the inverter is possible to act as a reactive power compensation device to eliminate harmonic operates as power factor change inhibiting, anti-transient voltage fluctuation, active filter. In this paper, we propose a design method of igbt stack considering the reactive power supply capacity to improve the quality and reliability of the inverter. Moreover, the grid-connected inverter considering the four-quadrant rated operation designed stack and verified the feasibility of the design through a thermal analysis.

  • PDF

Fabrication and Operational Characteristics of 10kW Class PAFC (10kW급 인산형 연료전지 제작 및 운전 특성)

  • Song, Rak-Hyun;Kim, Chang-Soo;Shin, Dong-Ryul;Choi, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1543-1545
    • /
    • 1998
  • In order to develop PAFC stack technology using 2.000$cm^3$ electrode-matrix, 10kW stack consisted of 63 single cell was fabricated and operated. The operation installation, and control and data acquision system for the 10kW PAFC stack were designed and equipped. The stack showed the performance of 10kW (275A at 36.5V) and uniform distribution of temperature and voltage between the cells.

  • PDF

A Study on the Design and Efficiency of Membrane-Electrolyte Assembly in PEFC (PEFC 막-전극 접합체의 설계 및 효율에 관한 연구)

  • Kim H. G.;Kim Y. S.;Kim H. Y.;Yang Y. M.;Nah S. C.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.180-184
    • /
    • 2005
  • An experimental study is performed to evaluate the performance and the efficiency by humidifying MEA and by making the double-tied catalyst layers in a fuel cell system which is taken into account the physical and thermal concept. An electrical output produced by PEFC(polymer Electrolyte Fuel Cell) is measured to assess the performance of the stack and the efficiency is also evaluated according to the different situation in which is placed with and without the humidification of MEA (Membrane Electrolyte Assembly). Subsequently, It is found that the measured values of stack voltage and current are influenced by the stack temperature, humidification, and the double-tied catalyst layers which gives more enhanced values to apply for electric units.

  • PDF

TA Study on the Performance and the Efficiency in Polymer Electrolyte embrane Fuel Cell (고분자전해질형 연료전지의 성능해석 및 효율에 관한 연구)

  • Kim Hong-Gun;Kim Yoo-Shin;Yang Sung-Mo;Nah Seok-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.75-80
    • /
    • 2005
  • An experimental study is carried out to investigate the performance and the efficiency humidifying Membrane Electrolyte Assembly and having the double-tied catalyst layers in a fuel cell system which is taken into account the physical and thermal concept. Subsequently, an electric output produced by PEMFC(Polymer Electrolyte Membrane Fuel Cell) is measured to assess the performance of a stack, and the efficiency is also evaluated according to the different situation in which unit cell is placed with and without the humidification of the MEA. It is found that the measured values of stack voltage and current are influenced by the stack temperature, humidification, and the double-tied catalyst layers which give more enhanced values to be applied to electric units.

Analysis of the Effects of CO Poisoning and Air Bleeding on the Performance of a PEM Fuel Cell Stack using First-Order System Model (일차계 모델을 이용한 고분자전해질 연료전지 스택의 CO Poisoning 및 Air Bleeding 효과 분석)

  • Han, In-Su;Shin, Hyun Khil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.370-375
    • /
    • 2013
  • We analyze the effects of CO poisoning and air bleeding on the performance of a PEM (polymer electrolyte membrane) fuel cell stack fabricated using commercial MEA (membrane electrode assembly). Dynamic response data from the experiments on the performance of a stack are identified by obtaining steady-state gains and time-constants of the first-order system model expressed as a first-order differential equation. It is found that the cell voltage of the stack decreases by 1.3-1.6 mV as the CO concentration rises by 1 ppm. The time elapsed to reach a new steady state after a change in the CO concentration is shortened as the magnitude of the change in the CO concentration increases. In general, the steady-state gain becomes bigger and the time-constant gets smaller with increasing the air concentration (air-bleeding level) in the reformate gas to restore the cell voltage. However, it is possible to recover 87%-96% of the original cell voltages, which are measured with free of CO, within 1-30 min by introducing the bleed air as much as 1% of the reformate gas into the stack.

Design of an Adaptive Controller for Steady Voltage Characteristics of the Fuel Cell (연료전지의 정전압 특성을 위한 적응제어기 설계)

  • Hyun, Keun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.51-54
    • /
    • 2007
  • In this paper, the dynamic models of a SOFC are rearranged. It consists of electrochemical model, thermal model, voltage equation and several loss equations. Experiment results of the real SOFC system are shown to evaluate the steady voltage characteristics. Control problems on tracking steady voltage by air flow is discussed and an adaptive controller is designed to withstand to the variation of stack current. Simulation is done to prove the solution of control algorithms.

  • PDF