• Title/Summary/Keyword: Stack method

Search Result 443, Processing Time 0.021 seconds

A study on Monitoring the Inner Structure of Dam Body Using High Resolution Seismic Reflection Method (고분해능 탄성파 반사법을 이용한 댐체 내부구조 모니터링 연구)

  • Kim, Jung-Yul;Kim, Hyoung-Soo;Oh, Seok-Hoon;Kim, Yoo-Sung
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Defects of dam body which can be induced in seepage or leakage procedure can directly affect dam safety. Therefore, a proper inspection method should be carried out in the first place to find out their positions and sizes. After that, some reinforcement works such as grouting and the corresponding assessment could be taken in a proper way. The dam(center core type earth dam) issued in this study has been in need for intensive diagnosis and reinforcement work, because a lot of slumps similar to cracks, seepage and some boggy area have been observed on the downstream slope. High resolution seismic reflection method was performed on the crest profile twice before and after grouting work(Aug. 2001 and Nov. 2004) aimed at the dam inspection and the assessment of grouting efficiency as well. To enhance the data resolution, P-beam energy radiation technique which can reduce the surface waves and hence to reinforce the reflection events was used. Strong reflection events were recognized in the stack section before grouting work, It seems that the events would be caused by e.g. horizontal cracks with a considerable aperture. Meanwhile such strong reflection events were not observed in the section after grouting. That is, the grouting work was dear able to reinforce the defects of dam body. Hence, the section showed an well arranged picture of dam inner structure. In this sense, seismic reflection method will be a desirable technique for dam inspection and for monitoring dam inner structure as well.

  • PDF

The Sub-Peres Functions for Random Number Generation (무작위수생성을 위한 부 페레즈 함수)

  • Pae, Sung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.19-30
    • /
    • 2013
  • We study sub-Peres functions that are defined recursively as Peres function for random number generation. Instead of using two parameter functions as in Peres function, the sub-Peres functions uses only one parameter function. Naturally, these functions produce less random bits, hence are not asymptotically optimal. However, the sub-Peres functions runs in linear time, i.e., in O(n) time rather than O(n logn) as in Peres's case. Moreover, the implementation is even simpler than Peres function not only because they use only one parameter function but because they are tail recursive, hence run in a simple iterative manner rather than by a recursion, eliminating the usage of stack and thus further reducing the memory requirement of Peres's method. And yet, the output rate of the sub-Peres function is more than twice as much as that of von Neumann's method which is widely known linear-time method. So, these methods can be used, instead of von Neumann's method, in an environment with limited computational resources like mobile devices. We report the analyses of the sub-Peres functions regarding their running time and the exact output rates in comparison with Peres function and other known methods for random number generation. Also, we discuss how these sub-Peres function can be implemented.

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.

Improvement of Electrical Performance and Stability in ZnO Channel TFTs with Al Doped ZnO Layer (Al Doped ZnO층 적용을 통한 ZnO 박막 트랜지스터의 전기적 특성과 안정성 개선)

  • Eom, Ki-Yun;Jeong, Kwang-Seok;Yun, Ho-Jin;Kim, Yu-Mi;Yang, Seung-Dong;Kim, Jin-Seop;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.291-294
    • /
    • 2015
  • Recently, ZnO based oxide TFTs used in the flexible and transparent display devices are widely studied. To apply to OLED display switching devices, electrical performance and stability are important issues. In this study, to improve these electrical properties, we fabricated TFTs having Al doped Zinc Oxide (AZO) layer inserted between the gate insulator and ZnO layer. The AZO and ZnO layers are deposited by Atomic layer deposition (ALD) method. I-V transfer characteristics and stability of the suggested devices are investigated under the positive gate bias condition while the channel defects are also analyzed by the photoluminescence spectrum. The TFTs with AZO layer show lower threshold voltage ($V_{th}$) and superior sub-threshold slop. In the case of $V_{th}$ shift after positive gate bias stress, the stability is also better than that of ZnO channel TFTs. This improvement is thought to be caused by the reduced defect density in AZO/ZnO stack devices, which can be confirmed by the photoluminescence spectrum analysis results where the defect related deep level emission of AZO is lower than that of ZnO layer.

The Notch Filter Design for Mitigation Current Ripple of Fuel cell-PCS (연료전지용 PCS의 출력 전류 리플 개선을 위한 노치 필터 설계)

  • Kim, Seung-Min;Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.106-112
    • /
    • 2012
  • As a fuel cell converts the chemical energy of the fuel cell into electrical energy by electrochemical reaction, the fuel cell system is uniquely integrated technique including fuel processor, fuel cell stack, power conditioning system. The residential fuel cell-PCS(Power Conditioning System) needs to convert efficiently the DC current produced by the fuel cell into AC current using single-phase DC-AC inverter. A single-phase DC-AC inverter has naturally low frequency ripple which is twice frequency of the output current. This low frequency(120Hz) ripple reduces the efficiency of the fuel cell. This paper presents notch filter with IP voltage controller to reject specific 120Hz current ripple in single-phase inverter. The notch filter is designed that suppress just only specific frequency component and no phase delay. Finally, the proposed notch filter design method has been verified with computer simulation and experimentation.

Optimum Design of a Helicopter Tailrotor Driveshaft Using Flexible Matrix Composite (유연복합재를 이용한 헬리콥터 꼬리날개 구동축의 최적 설계)

  • Shin, Eung-Soo;Hong, Eul-Pyo;Lee, Kee-Nyeong;Kim, Ock-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1914-1922
    • /
    • 2004
  • This paper provides a comprehensive study of optimum design of a helicopter tailrotor driveshaft made of the flexible matrix composites (FMCs). Since the driveshaft transmits power while subjected to large bending deformation due to aerodynamic loadings, the FMCs can be ideal for enhancing the drivetrain performance by absorbing the lateral deformation without shaft segmentation. However, the increased lateral flexibility and high internal damping of the FMCs may induce whirling instability at supercritical operating conditions. Thus, the purpose of optimization in this paper is to find a set of tailored FMC parameters that compromise between the lateral flexibility and the whirling stability while satisfying several criteria such as torsional buckling safety and the maximum shaft temperature at steadystate conditions. At first, the drivetrain was modeled based on the finite element method and the classical laminate theory with complex modulus approach. Then, an objective function was defined as a combination of an allowable bending deformation and external damping and a genetic algorithm was applied to search for an optimum set with respect to ply angles and stack sequences. Results show that an optimum laminate consists of two groups of layers: (i) one has ply angles well below 45$^{\circ}$ and the other far above 45$^{\circ}$ and (ii) the number of layers with low ply angles is much bigger than that with high ply angles. It is also found that a thick FMC shaft is desirable for both lateral flexibility and whirling stability. The genetic algorithm was effective in converging to several local optimums, whose laminates exhibit similar patterns as mentioned above.

Development of HIL simulator for performance validation of stack inlet gases temperature controller of marine solid oxide fuel cell system (선박용 고체산화물형 연료전지 시스템의 스택 공급 가스 온도 제어기 성능 검증을 위한 HIL 시뮬레이터 개발)

  • Ahn, Jong-Woo;Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.582-588
    • /
    • 2013
  • Solid Oxide Fuel Cell (SOFC) has been focused as a promising power source, which can replace a diesel engine regarding as major source of air pollution by the ship, due to high efficiency and eco-friendly. High operating temperature of SOFC is enable to secure of high efficiency, use various fuels and no need of high priced catalyst, but it may damage to components of SOFC. Therefore temperature control system has to be designed and validated before employing the fuel cell system for securing high efficiency and reliability. In this paper, instead of using typical method to validate performance of the controller, which consumes high cost and time, performance validation system using Hardware-in-the-loop simulation was developed and validated performence of the designed temperature controller for SOFC system.

Electricity Generations in Submerged-flat and Stand-flat MFC Stacks according to Electrode Connection (침지 및 직립 평판형 MFC 스택에서 전극연결 방식에 따른 전기발생량 비교)

  • Yu, Jaecheul;Park, Younghyun;Lee, Taeho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.589-593
    • /
    • 2016
  • Microbial fuel cell (MFC) can produce electricity from oxidation-reduction of organic and inorganic matters by electrochemically active bacteria as catalyst. Stacked MFCs have been investigated for overcoming low electricity generation of single MFC. In this study, two-typed stacked-MFCs (submerged-flat and stand-falt) were operated according to electrode connection for optimal stacked technology of MFC. In case of submerged-flat MFC with all separator electrode assembly (SEA) sharing anode chamber, MFC with mixed-connection showed more voltage loss than MFC with single-connection method. And MFC stacked in parallel showed better voltage production than MFC stacked in series. In case of stand-flat MFC, voltage loss was bigger when SEAs sharing anodic chamber only were connected in series. Voltage loss was decreased when SEAs parallel connected SEAs sharing anodic chamber were connected in series.

The development of fuel processor for compact fuel cell cogeneration system (소형 열병합 연료전지 연계형 연료처리시스템 개발)

  • Cha, Jung-Eun;Jun, Hee-Kwon;Park, Jung-Joo;Ko, Youn-Taek;Hwang, Jung-Tae;Chang, Won-Chol;Kim, Jin-Young;Kim, Tae-Won;Kim, In-Ki;Jeong, Young-Sik;Kal, Han-Joo;Yung, Wang-Rai;Jung, Woon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.323-327
    • /
    • 2009
  • To extract hydrogen for stack, fuels such as LPG and LNG were reformed in the fuel processor, which is comprised of desulfurizer, reformer, shift converter, CO remover and steam generator. All elements of fuel processor are integrated in a single package. Highly active catalysts (desulfurizing adsorbent, reforming catalyst, CO shift catalyst, CO removal catalyst) and the various burners were developed and evaluated in this study. The performance of the developed catalysts and the commercial ones was similar. 1 kW, 5 kW class fuel processor systems using the developed catalyst and burner showed efficiency of 75 %(LHV, for LNG). The start-up time of the 1 kW class fuel processor was less than 50 minutes and its volume including insulation was about 30 l. The start-up time of 3 kW and 5 kW class fuel processors with the volume of 90 l and 150 l, respectively, was about 60 minutes. In the case of LPG fuel, efficiency, volume and start-up time of 1kW class fuel processor showed 73 %(LHV), < 60 l and < 60 min, respectively. Advanced fuel processor showed more highly efficiency and shorter start-up time due to the improvement of heat exchanger and operating method. 1 kW and 3 kW class fuel processors have been evaluated for reliability and durability including with on/off test of developed catalysts and burner.

  • PDF

Korean Coreference Resolution using Stacked Pointer Networks based on Position Encoding (포지션 인코딩 기반 스택 포인터 네트워크를 이용한 한국어 상호참조해결)

  • Park, Cheoneum;Lee, Changki
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.113-121
    • /
    • 2018
  • Position encoding is a method of applying weights according to position of words that appear in a sentence. Pointer networks is a deep learning model that outputs corresponding index with an input sequence. This model can be applied to coreference resolution using attribute. However, the pointer networks has a problem in that its performance is degraded when the length of input sequence is long. To solve this problem, we proposed two contributions to resolve the coreference. First, we applied position encoding and dynamic position encoding to pointer networks. Second, we stack deeply layers of encoder to make high-level abstraction. As results, the position encoding based stacked pointer networks model proposed in this paper had a CoNLL F1 performance of 71.78%, which was improved by 6.01% compared to vanilla pointer networks.