• Title/Summary/Keyword: Stack effect

Search Result 325, Processing Time 0.023 seconds

A Study on Block from Spread of Fire of the Exteriors Installation Space (외장재 설치 공간의 화재확산 차단에 관한 연구)

  • Min, Se-Hong;Yun, Jung-Eun;Kim, Mi-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • In this study, FDS fire simulation experiments and measured wind speed by applying the exterior installation portion for blocking the spread of the fire was investigated. As a result, aluminum composite panels installed in the lower and the upper part of the panel to remove all the lower side, and then the maximum wind speed 0.24 m/s and the upper side 0.58 m/s were measured. In the FDS, the measured wind speed difference air currents are approximately 3.7 times in 12 seconds, the occurrence of 17 seconds early moment wind 2.2 m/s was measured from. Before and after the fire occurred in early of the air velocity about 39 seconds was 3.5 times difference. Such air currents caused by the temperature of the building but also by the building height was found. Turbulent flame of fire by expanding the vertical extent of damage become greatly important factor. Therefore, through the exterior installation portion of the block that can delay the spread of fire is expected that this should be taken.

Study on the Establishment of Large Building Airtightness Measurement Standards (대규모 건물의 기밀성능 측정기준 수립에 관한 연구)

  • Lee, Dong-Seok;Ji, Kyung-Hwan;Jo, Jae-Hun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.117-124
    • /
    • 2014
  • Airtightness standards using fan pressurization method are normally used for measuring small buildings, detached houses, and apartment units. And, it is easy to conduct airtightness measurement through this fan pressurization method. However, it can be difficult to achieve accurate measurement results for the large buildings as the height and volume of the buildings have been increased. In this paper, we studied the principle of airtightness method by fan pressurization. And, we reviewed the measurement process described in ISO 9972, EN 13829, ASTM E779, ATTMA TS 1, CAN/CGSB 149.15, and JIS A 2201. Then, we categorized the methods' items according by air flow rate (Q) and pressure difference(${\Delta}P$). As a result, we made a comparison analysis on the measurement methods appeared in each standards. And, we achieved 5 test conditions about air flow rate and pressure difference to state requirements for large buildings airtightness measurement.

Determination of Memory Trap Distribution in Charge Trap Type SONOSFET NVSM Cells Using Single Junction Charge Pumping Method (Single Junction Charge Pumping 방법을 이용한 전하 트랩형 SONOSFET NVSM 셀의 기억 트랩분포 결정)

  • 양전우;홍순혁;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.822-827
    • /
    • 2000
  • The Si-SiO$_2$interface trap and nitride bulk trap distribution of SONOSFET(polysilicon-oxide-nitride-oxide-semiconductor field effect transistor) NVSM (nonvolatile semiconductor memory) cell is investigated by single junction charge pumping method. The device was fabricated by 0.35㎛ standard logic fabrication process including the ONO stack dielectrics. The thickness of ONO dielectricis are 24$\AA$ for tunnel oxide, 74 $\AA$ for nitride and 25 $\AA$ for blocking oxide, respectively. By the use of single junction charge pumping method, the lateral profiles of both interface and memory traps can be calculated directly from experimental charge pumping results without complex numerical simulation. The interface traps were almost uniformly distributed over the whole channel region and its maximum value was 7.97$\times$10$\^$10/㎠. The memory traps were uniformly distributed in the nitride layer and its maximum value was 1.04$\times$10$\^$19/㎤. The degradation characteristics of SONOSFET with write/erase cycling also were investigated.

  • PDF

Inhibition of Hydrogen Formation with Calcium Hydroxide on Zinc Electrode of Film-type Manganese Battery

  • Yun, Je-Jung;Kim, Nam-In;Hong, Chang Kook;Park, Kyung Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.135-138
    • /
    • 2015
  • A manganese dioxide (MnO2) layer and zinc (Zn) layer are used as the cathode and the anode to develop filmtype manganese battery, in which a stack of a MnO2 layer, gel electrolyte, and Zn layer are sandwiched between two plastic layers. This paper describes the chemical equation of swelling control upon the film-type manganese battery. We examined the reduction of hydrogen formation, by using calcium hydroxide Ca(OH)2 as an additive in the electrolyte of film-type manganese battery. The phenomena or an effect of reduced hydrogen gas was proven by cyclic voltammogram, X-ray photoelectron spectra (XPS), and volume of hydrogen formation. The amount of H2 gas generation in the presence of Ca2+ ion was reduced from 4.81 to 4.15 cc/g-zinc (14%), and the corrosion of zinc electrode in the electrolyte was strongly inhibited as time passed.

Fabrication and Device Performance of Tera Bit Level Nano-scaled SONOS Flash Memories (테라비트급 나노 스케일 SONOS 플래시 메모리 제작 및 소자 특성 평가)

  • Kim, Joo-Yeon;Kim, Moon-Kyung;Kim, Byung-Cheul;Kim, Jung-Woo;Seo, Kwang-Yell
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1017-1021
    • /
    • 2007
  • To implement tera bit level non-volatile memories of low power and fast operation, proving statistical reproductivity and satisfying reliabilities at the nano-scale are a key challenge. We fabricate the charge trapping nano scaled SONOS unit memories and 64 bit flash arrays and evaluate reliability and performance of them. In case of the dielectric stack thickness of 4.5 /9.3 /6.5 nm with the channel width and length of 34 nm and 31nm respectively, the device has about 3.5 V threshold voltage shift with write voltage of $10\;{\mu}s$, 15 V and erase voltage of 10 ms, -15 V. And retention and endurance characteristics are above 10 years and $10^5$ cycle, respectively. The device with LDD(Lightly Doped Drain) process shows reduction of short channel effect and GIDL(Gate Induced Drain Leakage) current. Moreover we investigate three different types of flash memory arrays.

SHAPE EFFECT ON PERFORMANCE OF MULTILAYER CERAMIC ACTUATOR

  • Wee, S. B.;Jeong, S. J.;Song, J. S.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.163-168
    • /
    • 2003
  • In the present study, the piezoelectricity and polarization of multilayer ceramic actuator, being designed to stack PMN-PZ-PT ceramic layers and Ag-Pd electrode layers alternatively, were investigated under a consideration of geometric factor, the volume ratio of the ceramic to the electrode layers. The actuators were fabricated by tape casting of $0.2Pb(Mg_{1/3}Nb_{2/3)O_3-0.38PbZrO_3-0,42PbTiO_3$ followed by lamination and burnout & co-firing processes. The actuators of $10\times10\times0.6~2\textrm{mm}^3$ in size were formed in a way that $60 ~ 200\mu\textrm{m}$ thick were stacked alternatively with $5\mu\textrm{m}$ thick electrode layer. Increases in polarization and electric field-induced displacement with thickness of the ceramic layer were attributed to change of $90^{\circ}$/$180^{\circ}$ domain ratio, which was affected by interlayer internal stress. The piezoelectricity and actuation behaviors were found to depend upon the volume ratio (or thickness ratio) of ceramic to electrode layers.

  • PDF

Effect of Load Modeling on Low Frequency Current Ripple in Fuel Cell Generation Systems

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.307-318
    • /
    • 2010
  • In this work, an accurate analysis of low frequency current ripple in residential fuel cell power generation systems is performed based on the proposed residential load model and its unique operation algorithm. Rather than using a constant dc voltage source, a proton exchange membrane fuel cell (PEMFC) model is implemented in this research so that a system-level analysis considering the fuel cell stack, power conditioning system (PCS), and the actual load is possible. Using the attained results, a comparative study regarding the discrepancies of low frequency current ripple between a simple resistor load and a realistic residential load is performed. The data indicate that the low frequency current ripple of the proposed residential load model is increased by more than a factor of two when compared to the low frequency current ripple of a simple resistor load under identical conditions. Theoretical analysis, simulation data, and experimental results are provided, along with a model of the load usage pattern of low frequency current ripples.

A Study on the Thermal Deformation of Current Collectors by Burning Heat Pellets in Thermal Batteries (열전지의 열원 연소에 따른 전류집전체 열변형에 관한 연구)

  • Ji, Hyun-Jin;Kim, Jong-Myong;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.527-534
    • /
    • 2012
  • Thermal batteries are primary batteries that use molten salts as an electrolyte and employ an internal pyrotechnic source to heat the battery stack to operating temperatures, typically between 450 and $550^{\circ}C$. The unit cell of thermal batteries consists of an anode, an electrolyte, a cathode, a heat pellet and a current collector. The heat source for such batteries is typically heat pellets based on $Fe/KClO_4$. The elevated temperature by combustion of heat pellet is supposed to cause a flatness non-uniformity, buckling, with a lateral extension diameter of current collector. This paper mainly focused on the combustion and buckling model of current collector to simulate the effect of heat source. Mechanical stresses in the current collector caused by thermal stress is a critical design consideration of thermal batteries because the internal short circuit could be occurred.

Characteristic Analysis of the Surface Concentration Distribution under the Influence of Particle Settling by Lagrangian Model (Lagrangian 모형에 의한 분진 침강 효과에 따른 지표면 농도의 분포특성 분석)

  • Park, I.S.;Kang, I.G.;Choi, K.D.
    • Journal of Environmental Impact Assessment
    • /
    • v.2 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • An analysis for particle settling effects via of plume centerline tilted exponentially under the influence of panicle settling velocity is carried out for particle of $30{\mu}m$ diameter with $1g/cm^3$ density and 0.02m/s settling velocity corresponding to its particle characteristic according to various wind speeds, atmospheric stabilities. Characteristic analysis of surface concentration distribution simulated by Lagrangian model also are carried out under the influence of plume centerline tilted exponentially at 10m stack height emitted 200 particles per second. This study reveals that plume centerline at the nearby source is sharply tilted exponentially under the condition of stable, weakly wind speed, therefore the lower concentration at the nearby source, the higher concentration at the downwind distance far away from source than actual one is brought out, if not apply the effect of plume centerline tilted exponentially to diffusion Model.

  • PDF

Analysis of Sensitivity Characteristics with AMESim Model for Piezo Injector (AMESim기반 피에조 인젝터용 해석모델의 민감도 특성 해석)

  • Jo, Insu;Kwon, Jiwon;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to the emission characteristics and fuel consumption. At present, diesel injection system with piezo element is replacing conventional solenoid type due to their faster electro-mechanical properties. In this study, it was investigated the sensitivity characteristics regarding internal hydraulic modeling based on the AMESim environment of piezo-driven injector The analytic parameter for this study defined such as In/Out orifice, injection hole's diameter and driven voltage on piezo stack. As the results, it was shown that these parameter influence on a fast response characteristics of piezo-driven injector. Also we found fuel pressure recovery time is faster about 0.1 ms due to larger IN orifice diameter. And larger OUT orifice diameter occurs maximum pressure drop with faster its timing of about 0.2 ms.