Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.3.135

Inhibition of Hydrogen Formation with Calcium Hydroxide on Zinc Electrode of Film-type Manganese Battery  

Yun, Je-Jung (Business Supporting Team, Nano Bio Research Center)
Kim, Nam-In (R&D Center, Rocket Electric)
Hong, Chang Kook (School of Applied Chemical Engineering, Chonnam National University)
Park, Kyung Hee (The Research Institute of Advanced Engineering Technology, Chosun University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.3, 2015 , pp. 135-138 More about this Journal
Abstract
A manganese dioxide (MnO2) layer and zinc (Zn) layer are used as the cathode and the anode to develop filmtype manganese battery, in which a stack of a MnO2 layer, gel electrolyte, and Zn layer are sandwiched between two plastic layers. This paper describes the chemical equation of swelling control upon the film-type manganese battery. We examined the reduction of hydrogen formation, by using calcium hydroxide Ca(OH)2 as an additive in the electrolyte of film-type manganese battery. The phenomena or an effect of reduced hydrogen gas was proven by cyclic voltammogram, X-ray photoelectron spectra (XPS), and volume of hydrogen formation. The amount of H2 gas generation in the presence of Ca2+ ion was reduced from 4.81 to 4.15 cc/g-zinc (14%), and the corrosion of zinc electrode in the electrolyte was strongly inhibited as time passed.
Keywords
Film-type manganese battery; Electrolyte; Calcium hydroxide; Inhibitor; Hydrogen gas;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. P. Kowalczyk, R. A. Pollak, F. R. McFeeley, L. Ley, and D. A. Shirley, Phys. Rev. B, 9, 381(1974).   DOI
2 M. Yano, S. Fujitani, K. Nishio, Y. Akai, and M. Kurimura, J. Power Sources, 74, 129 (1998).   DOI   ScienceOn
3 P. Hiralal, S. Imaizumi, H. E. Unalan, H. Matsumoto, M. Minagawa, M. Rouvala, A. Tanioka, and G. A. Amaratunga, ACS Nano, 25, 2730 (2010).   DOI   ScienceOn
4 J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, and J. P. Cho, Adv. Energy Mater., 1, 34 (2011).   DOI   ScienceOn
5 Y. D. Cho and G. T. Fey, J. Power Sources, 184, 610 (2008).   DOI   ScienceOn
6 M.H.S. Andrade, M. L. Acioli, J.G.S. Júnior, J.C.P. Silva, E. O. Vilar,and J. Tonholo, Int. J. Hydrogen Energy, 29, 235 (2004).   DOI   ScienceOn
7 M. Yano, Y. Akai, M. Kurimura, S. Fujitani, K. Nishio, and Denki Kagaku, 65, 650 (1997).
8 A. R. El-Sayed, H. S. Mohran, H. M. and A. El-Lateef, Metallurgical and Materials Transactions A, 43, 619 (2012).   DOI   ScienceOn
9 K. Yamakawa, H. Tsubakino, and K. Kawanishi, Denki Kagaku, 59, 325 (1991).
10 S. P. Kowalczyk, R. A. Pollak, F. R. McFeeley, L. Ley, and D. A. Shirley, Phys. Rev. B, 8, 2387 (1973).   DOI
11 A. Miura, K. Takada, R. Okazaki, H. Ogawa, T. Uemura, Y. Nakamura,and N. Kasahara, Denki Kagaku, 57, 459 (1989).
12 H. B. Shao, J. M. Wang, Z. Zhang, J. Q. Zhang, and C. N. Cao, Materials Chemistry and Physics, 77, 305 (2003).   DOI   ScienceOn
13 B. Xin, W. Jiang, H. Aslam, K. Zhang, C. Liu, R. Wang, and Y. Wang, Bioresour. Technol., 106, 147 (2012).   DOI   ScienceOn
14 L. Hu, H. Wu, F. L. Mantia, Y. Yang, and Y. Cui, ACS Nano, 4, 5843 (2010).   DOI   ScienceOn
15 Y. G. Lee, J. D. Kim, S. H. Kim, and K. M. Kim, J. Power Sources, 195, 3715 (2010).   DOI   ScienceOn
16 C. Yada, Y. Iriyama, T. Abe, K. Kikuchi, and Z. Ogumi, Electrochem. Commun., 11, 413 (2009).   DOI   ScienceOn
17 C. D. Wagner, W. M. Riggs, L. E. Davis, J. E. Moueler, and G. E. Muilenberg, Eds., Handbook of X-ray Photoelectron Spectroscopy(Perkin-Elmer, Minnesota, 1979).
18 A. Cornell, G. Lindbergh, and D. Simonsson, Electrochim. Acta, 37, 1873 (1992).   DOI   ScienceOn