• Title/Summary/Keyword: Stack Thickness

Search Result 90, Processing Time 0.023 seconds

Robust Design of Composite Structure under Combined Loading of Bending and Torsion (굽힘-비틀림 복합하중을 받는 복합재료 구조물의 최적 강건 설계)

  • Yun, Ji-Yong;O, Gwang-Hwan;Nam, Hyeon-Uk;Han, Gyeong-Seop
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.211-214
    • /
    • 2005
  • This research studied robust design of composite structure under combined loading of bending and torsion. DOE (Design of Experiment) technique was used to find important design factors. The results show that the beam height, beam width, layer thickness and stack angle of outer-layer are important design parameter. The $2^{nd}$ DOE and RSM (Response Surface Model) were conducted to obtain optimum design. Multi-island genetic algorithm was used to optimum design. An approximate value of 6.65 mm in deflection was expected under optimum condition. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the sigma level reliability, the standard deviation of design parameter should be controlled within 2.5 % of average design value.

  • PDF

Seismic image of a new cretaceous(\ulcorner) sedimentary basin of the southwestern Korean continental shelf (한국 서남대륙붕의 새로운 백악기(\ulcorner) 퇴적분지의 탄성파 영상)

  • 오진용
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.33-41
    • /
    • 1999
  • A new sedimentary basin is reported from the marine multi-channel seismic data which were acquired for the hydrocarbon exploration on the southwestern Korean continental shelf in 1970. Along the southeastern part of Line 1192, the about 60-km-long basin with the thickness of 0.55~1.1 s is observed on the near-trace gather. However, both new and previous 24-fold stack sections fail to show the basin image probably due to its rugged top beneath the shallow water. The boundary contact between the basement with the velocity of about 5200m/s and the basin filling with the velocities of 4300~4700 m/s is unclear. These velocites are calculated from the corresponding shot gathers. Compared with the Haenam Basin, a neighbouring onshore Cretaceous sedimentary basin, we interpret that the new basin includes the volcanics and volcaniclastic sequences deposited in the lacustrine environment. This nonmarine basin was possibly formed as the result of the tectonic movement during the Cretaceous, implying the wide occurrence of the Cretaceous basins over the southern Korean Peninsula as well as its southwestern continental shelf.

  • PDF

Experimental Study on the Performance of a Bidirectional Hybrid Piezoelectric-Hydraulic Actuator

  • Jin, Xiao Long;Ha, Ngoc San;Li, Yong Zhe;Goo, Nam Seo;Woo, Jangmi;Ko, Han Seo;Kim, Tae Heun;Lee, Chang Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.520-528
    • /
    • 2015
  • The piezoelectric-hydraulic actuator is a hybrid device that consists of a hydraulic pump driven by a piezo-stack coupled to a conventional hydraulic cylinder. The actuator is of compact size, but can produce a moderate energy output. Such hybrid actuators are currently being researched and developed in many industrialized countries due to the requirement for high performance and compact flight systems. In a previous study, we designed and manufactured a unidirectional hybrid actuator. However, the blocking force was not as high as expected. Therefore, in this study, we redesigned the pump chamber and hydraulic cylinder and also improved the system by removing the air bubbles. Two different types of piezo-stacks were used. In order to achieve bidirectional capabilities in the actuator, commercial solenoid valves were used to control the direction of the output cylinder. Experimental testing of the actuator in unidirectional and bidirectional modes was performed to examine performance issues related to driving frequency, bias pressure, reed valve thickness, etc. The results showed that the maximum blocking force was measured as 970.2N when the frequency was 185Hz.

Surface Properties of Chromium Nitrided Carbon Steel as Separator for PEMFC (크롬질화처리한 저탄소강의 고분자 전해질 연료전지 분리판으로서의 표면특성)

  • Choi, Chang-Yong;Kang, Nam-Hyun;Nam, Dae-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.173-178
    • /
    • 2011
  • Separator of stack in polymer electrolyte membrane fuel cell (PEMFC) is high cost and heavy. If we make it low cost and lighter, it will have a great ripple. In this study, low carbon steel is used as base metal of separator because the cost of low carbon steel is very cheaper commercial metal material than stainless steels, which is widely used as separator. Low carbon steel has not a good corrosion resistance. In order to improve the corrosion resistance and electrolytic conductivity, low carbon steel needs to be surface treated. We made Chromium electroplated layer of $5{\mu}m$, $10{\mu}m$ thickness on the surface of low carbon steel and it was nitrided for 2 hours at $1000^{\circ}C$ in a furnace with 100 torr nitrogen gas pressure. Cross-sectional and surface microstructures of surface treated low carbon steel are investigated using SEM. And crystal structures are investigated by XRD. Interfacial contact resistance and corrosion tests were considered to simulate the internal operating conditions of PEMFC stack. The corrosion test was performed in 0.1 N $H_2SO_4$ + 2 ppm $F^-$ solution at $80^{\circ}C$. Throughout this research, we try to know that low carbon steel can be replaced stainless steel in separator of PEMFC.

Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate (그래핀이 코팅된 스테인리스강의 고분자전해질 연료전지 분리판 적용을 위한 표면 특성)

  • Lee, Su-Hyung;Kim, Jung-Soo;Kang, Nam-Hyun;Jo, Hyung-Ho;Nam, Dae-Guen
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.226-231
    • /
    • 2011
  • Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 ${\mu}m$ thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.

Etch characteristics of TiN thin film adding $Cl_2$ in $BCl_3$/Ar Plasma ($BCl_3$/Ar 플라즈마에서 $Cl_2$ 첨가에 따른 TiN 박막의 식각 특성)

  • Um, Doo-Seung;Kang, Chan-Min;Yang, Xue;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.168-168
    • /
    • 2008
  • Dimension of a transistor has rapidly shrunk to increase the speed of device and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate dioxide layer and low conductivity characteristic of poly-Si gate in nano-region. To cover these faults, study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$, and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-Si gate is not compatible with high-k materials for gate-insulator. Poly Si gate with high-k material has some problems such as gate depletion and dopant penetration problems. Therefore, new gate structure or materials that are compatible with high-k materials are also needed. TiN for metal/high-k gate stack is conductive enough to allow a good electrical connection and compatible with high-k materials. According to this trend, the study on dry etching of TiN for metal/high-k gate stack is needed. In this study, the investigations of the TiN etching characteristics were carried out using the inductively coupled $BCl_3$-based plasma system and adding $Cl_2$ gas. Dry etching of the TiN was studied by varying the etching parameters including $BCl_3$/Ar gas mixing ratio, RF power, DC-bias voltage to substrate, and $Cl_2$ gas addition. The plasmas were characterized by optical emission spectroscopy analysis. Scanning electron microscopy was used to investigate the etching profile.

  • PDF

1D Kinetics Model of NH3-Fed Solid Oxide Fuel Cell (암모니아 공급 고체산화물 연료전지의 1D 반응 모델)

  • VAN-TIEN GIAP;THAI-QUYEN QUACH;KOOK YOUNG AHN;YONGGYUN BAE;SUNYOUP LEE;YOUNG SANG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.723-732
    • /
    • 2022
  • Cracking ammonia inside solid oxide fuel cell (SOFC) stack is a compact and simple way. To prevent sharp temperature fluctuation and increase cell efficiency, the decomposition reaction should be spread on whole cell area. This leading to a question that, how does anode thickness affect the conversion rate of ammonia and the cell voltage? Since the 0D model of SOFC is useful for system level simulation, how accurate is it to use equilibrium solver for internal ammonia cracking reaction? The 1D model of ammonia fed SOFC was used to simulate the diffusion and reaction of ammonia inside the anode electrode, then the partial pressure of hydrogen and steam at triple phase boundary was used for cell voltage calculation. The result shows that, the ammonia conversion rate increases and reaches saturated value as anode thickness increase, and the saturated thickness is bigger for lower operating temperature. The similar cell voltage between 1D and 0D models can be reached with NH3 conversion rate above 90%. The 0D model and 1D model of SOFC showed similar conversion rate at temperature over 750℃.

Preparation of Polyacrylate-Based Non-Reinforced Anion Exchange Membranes via Photo-Crosslinking for Reverse Electrodialysis (역전기투석용 광가교형 폴리아크릴레이트계 음이온교환막 제조)

  • Tae Hoon Kim;Seok Hwan Yang;Jang Yong Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 2024
  • A photo-crosslinked anion exchange membrane (AEM) based on quaternary-aminated polyacrylates was developed for reverse electrodialysis (RED). Although reverse electrodialysis is a clean and renewable energy generation system, the low power output and high membrane cost are serious obstacles to its commercialization. Cross-linked AEMs without any polymer supporters were fabricated through photo-crosslinking between polymer-typed acrylates with anion conducting groups, in particular, polymer-typed acrylates were synthesized based on engineering plastic with outstanding mechanical and chemical property. The fabricated membranes showed outstanding physical, chemical, and electrochemical properties. The area resistance of the fabricated membranes (CQAPPOA-20, CQAPPOA-35, and CQAPPOA-50) were ~50% lower than that of AMV (2.6 Ω cm2). Moreover, the transport number of CQAPPOA-35 wase comparable to that of AMV, despite the thin thickness (40 ㎛) of the fabricated membranes. The RED stack with the CQAPPOA-35 membrane provided an excellent maximum power density of 2.327 W m-2 at a flow rate of 100 mL min-1, which is 15% higher than that (2.026 W m-2) of the RED stack with the AMV membrane. Considering easy fabrication process by UV photo-crosslinking and outstanding RED stack properties, the CQAPPOA-35 membrane is a promising candidate for REDs.

Annealing Characteristics of Ultrafine Grained AA1050/AA5052 Complex Aluminum Alloy Sheet Fabricated by Accumulative Roll-Bonding (반복겹침접합 압연공정에 의해 제조한 초미세립 AA1050/AA5052 복합알루미늄합금판재의 어닐링 특성)

  • Lee, Seong-Hee;Lee, Gwang-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.655-659
    • /
    • 2011
  • An ultrafine grained complex aluminum alloy was fabricated by an accumulative roll-bonding (ARB) process using dissimilar aluminum alloys of AA1050 and AA5052 and subsequently annealed. A two-layer stack ARB process was performed up to six cycles without lubricant at an ambient temperature. In the ARB process, the dissimilar aluminum alloys, AA1050 and AA5052, with the same dimensions were stacked on each other after surface treatment, rolled to the thickness reduction of 50%, and then cut in half length by a shearing machine. The same procedure was repeated up to six cycles. A sound complex aluminum alloy sheet was fabricated by the ARB process, and then subsequently annealed for 0.5h at various temperatures ranging from 100 to $350^{\circ}C$. The tensile strength decreased largely with an increasing annealing temperature, especially at temperatures of 150 to $250^{\circ}C$. However, above $250^{\circ}C$ it hardly decreased even when the annealing temperature was increased. On the other hand, the total elongation increased greatly above $250^{\circ}C$. The hardness exhibited inhomogeneous distribution in the thickness direction of the specimens annealed at relatively low temperatures, however it had a homogeneous distribution in specimens annealed at high temperatures.

$Ta/TaN_x$ Metal Gate Electrodes for Advanced CMOS Devices

  • Lee, S. J.;D. L. Kwong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.180-184
    • /
    • 2002
  • In this paper, the electrical properties of PVD Ta and $TaN_x$ gate electrodes on $SiO_2$ and their thermal stabilities are investigated. The results show that the work functions of $TaN_x$ gate electrode are modified by the amount of N, which is controlled by the flow rate of $N_2$during reactive sputtering process. The thermal stability of Ta and $TaN_x$ with RTO-grown $SiO_2$ gate dielectrics is examined by changes in equivalent oxide thickness (EOT), flat-band voltage ($V_{FB}$), and leakage current after post-metallization anneal at high temperature in $N_2$ambient. For a Ta gate electrode, the observed decrease in EOT and leakage current is due to the formation of a Ta-incorporated high-K layer during the high temperature annealing. Less change in EOT and leakage current is observed for $TaN_x$ gate electrode. It is also shown that the frequency dispersion and hysteresis of high frequency CV curves are improved significantly by a post-metallization anneal.