Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.6.723

1D Kinetics Model of NH3-Fed Solid Oxide Fuel Cell  

VAN-TIEN GIAP (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
THAI-QUYEN QUACH (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
KOOK YOUNG AHN (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
YONGGYUN BAE (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
SUNYOUP LEE (Mechanical Engineering, University of Science and Technology (UST))
YOUNG SANG KIM (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.6, 2022 , pp. 723-732 More about this Journal
Abstract
Cracking ammonia inside solid oxide fuel cell (SOFC) stack is a compact and simple way. To prevent sharp temperature fluctuation and increase cell efficiency, the decomposition reaction should be spread on whole cell area. This leading to a question that, how does anode thickness affect the conversion rate of ammonia and the cell voltage? Since the 0D model of SOFC is useful for system level simulation, how accurate is it to use equilibrium solver for internal ammonia cracking reaction? The 1D model of ammonia fed SOFC was used to simulate the diffusion and reaction of ammonia inside the anode electrode, then the partial pressure of hydrogen and steam at triple phase boundary was used for cell voltage calculation. The result shows that, the ammonia conversion rate increases and reaches saturated value as anode thickness increase, and the saturated thickness is bigger for lower operating temperature. The similar cell voltage between 1D and 0D models can be reached with NH3 conversion rate above 90%. The 0D model and 1D model of SOFC showed similar conversion rate at temperature over 750℃.
Keywords
Kinetic model; SOFC; 0D model; 1D model; Ammonia conversion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. A. Hajimolana, M. A. Hussain, W. M. A. Wan Daud, M. Soroush, and A. Shamiria, "Mathematical modeling of solid oxide fuel cells: a review", Renewable and Sustainable Energy Reviews, Vol. 15, No. 4, 2011, pp. 18931917, doi: https://doi.org/10.1016/j.rser.2010.12.011.   DOI
2 M. E. E. Abashar, "Ultraclean hydrogen production by am monia decomposition", Journal of King Saud University  Engineering Sciences, Vol. 30, No. 1, 2018, pp. 2-11, doi: https://doi.org/10.1016/j.jksues.2016.01.002.   DOI
3 E. S. Hecht, G. K. Gupta, H. Zhu, A. M. Dean, R. J. Kee, L. Maier, and O. Deutschmann, "Methane reforming kinetics within a NiYSZ SOFC anode support", Applied Catalysis A: General, Vol. 295, No.1 , 2005, pp. 4051, doi: https://doi.org/10.1016/j.apcata.2005.08.003.   DOI
4 T. Q. Quach, V. T. Giap, D. K. Lee, I. T. Pineda, and K. Y. Ahn, "Parametric study of a high-performance ammo-niafed SOFC standalone system", Journal of Mechanical Science and Technology, Vol. 36, No. 6, 2022, pp. 3193-3201, doi: https://doi.org/10.1007/s1220602205507.   DOI
5 G. Cinti, G. Discepoli, E. Sisani, and U. Desideri, "SOFC operating with ammonia: stack test and system analysis", Int. J. Hydrogen Energy, Vol. 41, No. 31, 2016, pp. 13583-13590, doi: https://doi.org/10.1016/j.ijhydene.2016.06.070.   DOI
6 IRENA, "Energy transition 2020", IRENA, 2020. Retrieved from https://www.irena.org/energytransition#:~:text=The%20energy%20transition%20is%20a,emissions%20to%20limit%20climate%20change.
7 Air Liquide S.A., A., Anglo American plc, BMW Group, Daimler AG, Engie S.A., Honda Motor Co. Ltd, Hyundai Motor Company, Kawasaki Heavy Industries Ltd., Royal Dutch Shell, The Linde Group, and Total S.A., Toyota Motor Corporation, "How hydrogen empowers the energy transition", 2017, Hydrogen Council. Retrieved from https://www.aeh2.org/iages/stries/AEH2/Docs_Externos/20170109hydrogencouncilvisiondocument.pdf.
8 M. V. Lototskyy, V. A. Yartys, B. G. Pollet, and R. C. Bowman Jr, "Metal hydride hydrogen compressors: a review", Int. J. Hydrogen Energy, Vol. 39, No. 11, 2014, pp. 5818-5851, doi: https://doi.org/10.1016/j.ijhydene.2014.01.158.   DOI
9 N. A. A. Rusman and M. Dahari, "A review on the current progress of metal hydrides material for solid-state hydrogen storage applications", Int. J. Hydrogen Energy, Vol. 41, No. 28, 2016, pp. 12108-12126, doi: https://doi.org/10.1016/j.ijhydene.2016.05.244.   DOI
10 J. S. Lee, A. Cherif, H. J. Yoon, S. K. Seo, J. E. Bae, H. J. Shin, C. Lee, H. Kwon, and C. J. Lee, "Large-scale overseas trans portation of hydrogen: comparative techno-economic and environmental investigation", Renewable and Sustainable Energy Reviews, Vol. 165, 2022, pp. 112556, doi: https://doi.org/10.1016/j.rser.2022.112556.   DOI
11 S. Ghavam, M. Vahdati, I. A. Grant Wilson, and P. Styring, "Sustainable ammonia production processes", Front. Energy Res., 2021, doi: https://doi.org/10.3389/fenrg.2021.580808.   DOI
12 IEA, "Ammonia technology roadmap", IEA, 2021. Retrieved from https://www.iea.org/reports/ammoniatechnologyroadmap.