• Title/Summary/Keyword: Stable walking

Search Result 180, Processing Time 0.024 seconds

Development of Smart Stick Using Motion Sensing and GPS for Elderly Users' Safety (모션센서 및 GPS를 활용하는 고령 사용자 안전을 위한 스마트 지팡이 개발)

  • Kim, Taehee;Ro, Cheulwoo;Yoon, Jangwon
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.45-50
    • /
    • 2016
  • This paper describes the development of smart sticks as walking assistance for elderly people that incorporate motion sensing, hear-beat sensing, data processing, and communication functions. Our sticks communicate with users' smart phones and upon a detection of falling-off, an alarm is generated and propagated to multiple guardians registered in advance. In addition, the sticks provide smart healthcare functionalities for elderly people thus suggest an health platform that is empowered by various health-related informations. The heartbeat sensors and motion sensors mounted on the sticks enable various additional functions. Our smart sticks are designed to function as stable walking assistance as well as to support elderly people by providing useful services in the convergence with information technologies.

Optimizing Path Finding based on Dijkstra's Algorithm for a Quadruped Walking Robot TITAN-VIII (4족보행 로봇 TITAN-VIII의 Dijkstra's Algorithm을 이용한 최적경로 탐색)

  • Nguyen, Van Tien;Ahn, Byong-Won;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.574-584
    • /
    • 2017
  • In this paper, the optimizing path finding control method is studied for a Legged-robot. It's named TITAN-VIII. It has a lot of advantages over the wheeled robot in the ability to walk freely on an irregular ground. However, the moving speed on the ground of the Legged-robot is slower than the Wheeled-robot's. Consequently, the purpose of the method is presented in this paper to minimize its time when it walks to a goal. It find the path, our approach is based on an algorithm which is called Dijkstra's algorithm. In the rest of paper, the various posture of the robot is discussed to keep the robot always in the statically stable. Based on above works, the math formulas are presented to determine the joint angles of the robot. After that an algorithm is designed to find and keep robot on the desired trajectory. Experimental results of the proposed method are demonstrated in the last of paper.

Identification of Irradiated Crabs by ESR Spectrometry

  • Nam, Hye-Seon;Ly, Sun-Yung;Yang, Jae-Seung
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • Electron spin resonance (ESR) spectroscopy was used to investigate the effect of irradiation dose on the ESR signal intensity of irradiated crabs and the stability of these radicals under 9 weeks of storage. Swimming and small crabs were irradiated with doses of 0, 1, 3, 5 and 7 kGy using a Co-60 irradiator at ambient temperature. A claw, a walking leg and a cars- pace of the crab pieced and dried were placed in a resonant quart tube within an EPR X-band spectrometer. The irradiated crabs presented an asymmetric absorption in shape at g$_1$=2.002 $\pm$ 0.003 and g$_2$=1.998$\pm$0.005, and were different from the non-irradiated ones. The intensity of the ESR signals was greatest in the claw, intermediate in the carapace and lowest in the walking leg. Samples given low and high doses of irradiation could also be distinguished. The ESR signal after irradiation was stable, even after a 9-week storage.

  • PDF

A Study of Pedestrian Navigation Service System for Visual Disabilities (시각장애인용 길안내 서비스 시스템에 대한 연구)

  • Jang, Young Gun;Cha, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 2017
  • This paper is a study on the design and realization of Pedestrian navigation service system for the visually impaired. As it is an user interface considering visually impaired, voice recognition functioned smartphone was used as the input tool and the Osteoacusis headset, which can vocally guide directions while recognizing the surrounding environment sound, was used as the output tool. Unlike the pre-existing pedestrian navigation smartphone apps, the developed system guides walking direction by the scale of the left and right stereo sound of the headset wearing, and the voice guidance about the forked or curved path is given several meters before according to the speed of the user, and the user is immediately warned of walking opposite direction or proceeding off the path. The system can acquire stable and reliable directional information using the motion tracker with the dynamic heading accuracy of 1.5 degrees. In order to overcome GPS position error, we proposed a robust trajectory planning algorithm for position error. Experimental results for the developed system show that the average directional angle error is 6.82 degrees (standard deviation: 5.98) in the experimental path, which can be stated that it stably navigated the user relatively.

Effects of Aquatic and Ground Obstacle Training on Balance and Muscle Activity in Patients With Chronic Stroke

  • Hwang, Hyun-chul;Kim, So-hee;Kim, Tae-ho
    • Physical Therapy Korea
    • /
    • v.26 no.4
    • /
    • pp.35-41
    • /
    • 2019
  • Background: Obstacle training affects lower limb muscle activity, balance, reducing the risk of falls, and making gait more stable. Objects: This study aimed to investigate the effects of aquatic and ground obstacle training on balance and muscle activity in patients with chronic stroke. Methods: The study subjects included 30 patients with stroke, who were divided into aquatic ($n_1=15$) and ground ($n_2=15$) groups. Groups underwent obstacle training three times per week, 30 min per session, for six weeks that went as follows: walking over sites with the paralyzed leg, stepping onto and down from a box step, and walking over obstacles with the non-paralyzed leg. Results: The experimental results were obtained by comparing muscle activity. Activity of the rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius were significantly increased in the aquatic group (p<.05). Activity of the biceps femoris and tibialis anterior were significantly increased in the ground group (p<.05); however, the rectus femoris and gastrocnemius were not significantly different. In the comparison of maximal distance regarding the limits of stability, it was significantly increased on the non-affected side, affected side, and anterior and posterior distance in the aquatic group (p<.05). It was significantly increased in the non-affected side and anterior and posterior distance the ground group (p<.05); however, maximal distance on the affected side distance was not significantly different. Conclusion: Gait training with aquatic and ground obstacles is effective for improving balance and gait ability of patients with stroke. However, it was more effective for the aquatic group than for the ground group.

Lunar Exploration Employing a Quadruped Robot on the Fault of the Rupes Recta for Investigating the Geological Formation History of the Mare Nubium (4족 보행 로봇을 활용한 달의 직선절벽(Rupes Recta)의 단층면 탐사를 통한 구름의 바다(Mare Nubium) 지역의 지질학적 형성 연구)

  • Hong, Ik-Seon;Yi, Yu;Ju, Gwanghyeok
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.64-75
    • /
    • 2021
  • On the moon as well as the earth, one of the easiest ways to understand geological formation history of any region is to observe the stratigraphy if it is available, the order in which the strata build up. By analyzing stratigraphy, it is possible to infer what geological events have occurred in the past. Mare Nubium also has an unique normal fault called Rupes Recta that shows stratigraphy. However, a rover moving with wheels is incompetent to explore the cliff since the Rupes Recta has an inclination of 10° - 30°. Therefore, a quadruped walking robot must be employed for stable expedition. To exploration a fault with a four-legged walking robot, it is necessary to design an expedition route by taking account of whether the stratigraphy is well displayed, whether the slope of the terrain is moderate, and whether there are obstacles and rough texture in the terrain based on the remote sensing data from the previous lunar missions. For the payloads required for fault surface exploration we propose an optical camera to grasp the actual appearance, a spectrometer to analyze the composition, and a drill to obtain samples that are not exposed outward.

Biped robot gait pattern generation using frequency feature of human's gait torque analysis (인간의 보행 회전력의 주파수 특징 분석을 이용한 이족로봇의 적응적 보행 패턴 생성)

  • Ha, Seung-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.100-108
    • /
    • 2008
  • This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, galt trajectories of the biped robot on the sagittal Plane are not enough to construct the complete gait pattern because the bided robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained.

A Study on Stable Motion Control of Humanoid Robot with 24 Joints Based on Voice Command

  • Lee, Woo-Song;Kim, Min-Seong;Bae, Ho-Young;Jung, Yang-Keun;Jung, Young-Hwa;Shin, Gi-Soo;Park, In-Man;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.17-27
    • /
    • 2018
  • We propose a new approach to control a biped robot motion based on iterative learning of voice command for the implementation of smart factory. The real-time processing of speech signal is very important for high-speed and precise automatic voice recognition technology. Recently, voice recognition is being used for intelligent robot control, artificial life, wireless communication and IoT application. In order to extract valuable information from the speech signal, make decisions on the process, and obtain results, the data needs to be manipulated and analyzed. Basic method used for extracting the features of the voice signal is to find the Mel frequency cepstral coefficients. Mel-frequency cepstral coefficients are the coefficients that collectively represent the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. The reliability of voice command to control of the biped robot's motion is illustrated by computer simulation and experiment for biped walking robot with 24 joint.

Reference ZMP Trajectory Generation and Implementation for a Biped Robot via Linear Inverted Dumbbell Model (LIDM) (선형 역덤벨 모델을 이용한 이족 보행 로봇의 기준 ZMP 궤적 생성 및 보행 구현)

  • Lee, Sang-Yong;Kim, Hwa-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.417-425
    • /
    • 2012
  • This paper presents reference ZMP trajectory generation and implementation for a biped robot via linear inverted dumbbell model (LIDM), which can consider the effect of external momentum on the center of mass (COM) of robot. Based on a reference ZMP trajectory derived by using LIDM, a base trajectory is proposed not only to make the locomotion of robot similar to that of human but also to facilitate its implementation and tuning. In order to realize a dynamic walking using the proposed trajectory, compliance, impedance and ZMP tracking controllers are adopted together. Extensive experiments show that the proposed locomotion of a biped robot is stable and also, similar to that of human. Further researches on balance recovery of a biped robot will be carried out to guarantee its robust locomotion in combination with the proposed trajectory.

Wireless Wearable GRF Sensing System for Continuous Measurements (연속적 데이터 획득을 위한 착용형 무선 지면 반력 측정 시스템)

  • Lee, Dongkwan;Jeong, Yongrok;Gu, Gwang Min;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.285-292
    • /
    • 2015
  • This paper presents a wireless ground reaction force (GRF) sensing system for ambulatory GRF recording. The system is largely divided into three parts: force sensing modules based on optical sensor, outsole type frame, and embedded system for wireless communication. The force sensing module has advantages of the low height, robustness to the moment interference, and stable response in long term use. In simulation study, the strain and stress properties were examined to satisfy the requirements of the GRF sensing system. Four sensing modules were mounted on the toe, ball, and heel of foot shaped frame, respectively. The GRF signals were extracted using Micrpcontroller unit and transferred to the smart phone via Bluetooth communication. We measured the GRF during the normal walking for the validation of the continuous recording capability. The recorded GRF was comparable to the off the shelf stationary force plate.