DOI QR코드

DOI QR Code

Biped robot gait pattern generation using frequency feature of human's gait torque analysis

인간의 보행 회전력의 주파수 특징 분석을 이용한 이족로봇의 적응적 보행 패턴 생성

  • Published : 2008.02.25

Abstract

This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, galt trajectories of the biped robot on the sagittal Plane are not enough to construct the complete gait pattern because the bided robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained.

본 논문에서는 이족로봇의 자연스러운 보행 패턴을 생성하기 위해 인간의 보행 회전력(torque)을 주파수 영역에서 분석하고 분석된 데이터를 이용하여 적응적으로 이족로봇의 보행패턴을 생성하는 기법을 제안한다. 인간의 보행 회전력은 시간영역에서 복잡한 형태를 가지므로 DCT(Discrete Cosine Transform)를 이용하여 주파수영역으로 변환시켜 분석한다. 주파수 영역에서 얻어진 보행 회전력의 특징을 이용하여 이족로봇의 sagittal plane에서의 보행패턴을 생성한다. 또한 이족로봇의 안정적이 보행 패턴을 생성하기 위하여 동적 평형 상태임을 판단할 수 있는 Zero Moment Point(ZMP)해석을 통해 frontal plane상의 보행패턴을 생성하여 3차원 공간상의 안정적이고 인간과 같이 자연스러운 보행 패턴을 생성했다.

Keywords

References

  1. M. Vukobratobic and D. Juricic, "Contrubution to the Synthesis of Biped Gait," IEEE Trans. Bio-Med. Eng, Vol. 1, pp. 1-6, 1969
  2. S. Kajita and K. Tani, "Study of Dynamic Biped Locomotion on Rugged Terrain : Derivation and Application of the Linear Inverted Pendulum Mode," IEEE Int. Conf. Robotics and Automation, Vol. 6, pp. 86-96, 1990
  3. Q. Huang, K. Shuuji, N. Koyachi, K. Kaneko, K. Yokoi, H. Arai, K. Komoriya and K. Tanie, "A High Stability, Smooth Walking pattern for a Biped Robot," IEEE Int. Conf. Robotics and Automation, pp. 65-71, 1999
  4. Yasuhisa Hasegawa, Takemasa Arakawa, and Toshio Fukuda, "Trajectory generation for biped locomotion robot," Mechatronics, Vol.10, No.1, pp. 67-89, 2000 https://doi.org/10.1016/S0957-4158(99)00052-5
  5. Capi, Masao Yokota, "Optimal Multi-criteria humanoid robot gait synthesis-an evolutionary approach", Int, Journal of Innovative Computing, Information and Control, Vol.2, pp. 1249-1258, December 2006
  6. A. Borghese, L Bianchi, F Lacquaniti, "Kinematic determinants of human locomotion," Journal of Physiology, pp. 863-879, 1996
  7. Xiuping Mu, Qiong Wu, "A Complete dynamics model of five-link bipedal walking," Proceeding of american control Conference, pp. 4926-4931 Denver, Colorado, America, 2003
  8. Xiuping Mu, Qiong Wu, "Development of a complete dynamic model of a planar five-link biped and sliding mode control of its locomotion during the double support phase" Int. Journal of control, Vol. 77, no. 8, pp. 789-799, 2004 https://doi.org/10.1080/00207170410001705005
  9. Miomir Vokobratovic, Branislav Borovac, "Zero-moment point-thirty five years of its life" Int. Journal of Humanoid Robotics, vol 1, no. 1, pp. 157-173, 2004 https://doi.org/10.1142/S0219843604000083
  10. David A. Winter, " Biomechanics and motor control, of human movement," WILEY, 1990