• Title/Summary/Keyword: Stable channel design

Search Result 78, Processing Time 0.032 seconds

Stable Channel Design for the Gravel-bed River Considering Design Constraints (설계구속인자를 고려한 자갈하상 하천의 안정하도 설계)

  • Ji, Un;Jang, Eun-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2860-2867
    • /
    • 2015
  • Stable channel design is to determine the width, depth and slope for satisfying the condition that the upstream incoming sediment rate is equal to the sediment transport rate at the design channel. Therefore, the most sensitive variable when designing a stable channel is the selection of a sediment transport equation applied for the channel design. Especially if in the case of gravel beds the designer uses the equation developed by using the data of sand rivers, the calculation result of the stable channel section has large errors. In this study, the stable channel design has been applied to the gravel bed river using the previous stable channel design program with newly added the sediment transport equation for gravel beds; and the stable channel section considering design constraints has been produced by using the analytical method. As results, in the case of the application with the fixed width, the depth predicted by Ackers and White's equation was the shallowest and Meyer-Peter and $M\ddot{u}ller's$ equation was 0.8 m deeper than the current section of 2.4 m. In the case of the application with the fixed depth, the width predicted by Engelund and Hansen's equation was twice wider than the current section and by Meyer-Peter and $M\ddot{u}ller's$ equation was 20 m wider than the current section of 44 m.

Channel-forming discharge calculation and stable channel section evaluation for downstream reach of Yeongju dam in Naesung stream (내성천의 영주댐 하류 구간의 하도형성유량 산정 및 안정하도 단면 평가)

  • Jang, Eun-Kyung;Ahn, Myeonghui;Ji, Un
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.183-193
    • /
    • 2018
  • Channel-forming discharge for downstream section of Yeongju dam in Naesung stream was calculated to analyze stable channel geometry. Determined channel-forming discharge was applied to design stable channel slope, depth, and base width at Yonghyeol station. Used data for channel-forming discharge and stable channel analysis were collected in downstream section of Yeongju dam in Naesung stream before the dam construction. Specified recurrence interval discharge, effective discharge, and bankfull discharge were analyzed and compared to decide final channel-forming discharge which was $260m^3/s$ of bankfull discharge. Stable channel analysis and design program was applied to predict stable channel section of width, depth, and slope with various sediment transport equations of Ackers and White, Brownlie, Engelund and Hansen, and Yang's equations. As a result, all equations of sediment transport produced milder slopes compared to current bed slope of 0.00177 and Ackers and White equation presented the most similar flow depth of current section with the design constraint of current channel width.

Physical Disturbance Improvement Evaluation and Habitat Suitability Analysis by Stable Channel Design (안정하도 설계에 따른 물리적 교란개선 평가와 서식적합도 분석)

  • Lee, Woong Hee;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.285-293
    • /
    • 2016
  • This study conducted the evaluations of stable channel and physical disturbance improvement for optimal construction of river structures by focusing on Wonju River. A stable slope was analyzed sectionally for stable channel design, and in order to satisfy the stable slope, river structure improvement scenarios were deduced. Accordingly, through physical disturbance improvement evaluation for each scenario, the study extracted the optimal scenario for stable channel design and physical disturbance improvements. The changes in physical habitat were analyzed when river structure improvements were made for stable channel design and physical disturbance improvement. Zacco koreanus, an indicator fish of the soundness of the aquatic ecosystem, was selected as a restoration target species by investigating the community characteristics of fish fauna and river environments in the Wonju River. The habitat suitability was investigated by the PHABSIM model with the habitat suitability index of Zacco koreanus. The results of the prediction evaluation showed a slight decrease in habitat suitability and weighted usable area. However, it was not influenced by the improvements in the river structure. The study suggested river structure arrangement methods that can improve physical soundness and safety of Wonju River, and confirmed that there were no effects to the changes in the physical habitat.

Stable Channel Design for Physical Disturbance Reduction and Analysis of Habitat Suitability (물리적 교란 저감을 위한 안정하도의 설계와 서식적합도 분석)

  • Lee, Woong Hee;Moon, Hyong Geun;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • This study analyzed the aspect of bed change according to the stable channel design on the Wonju River to quantitatively evaluate habitat suitability (HS). According to the result of evaluating stable channel of object section in the Wonju River, 17 sections among total 20 sections were stable and 3 sections were unstable. Physical disturbance improvement evaluation (PDIE) was the range average showed good disturbance condition with a range average of 112.17 points. Habitat suitability index of Zacco Koreanus, the most dominant species of the Wonju River, was used for analysis of physical habitat for fish. According to the physical habitat analysis result, HS was 0.16 and weighted usable area (WUA) was $347.68m^2$. The methods of improving/introducing/removing structures and dredging stream channel were used for stable channel design of unstable channel, and analyzed PDIE according to the aspect of bed change and changes in habitat suitability. Stable channel design was possible in 19 sections in times of structures improvement/introduction/removal, and PDIE was 117.53 points, HS was 0.14 points, and WUA was $313.37m^2$. Stable channel design was possible in all 20 sections when dredging the stream channel. PDIE was 116.50 points, HS was 0.16, and WUA was $332.14m^2$. Therefore, this study obtained channel design measures that can improve physical soundness and stability of the Wonju River, and it was analyzed that it will have no impact on changes of physical disturbance and physical habitat. Furthermore, this study analyzed velocity and depth of each section and appearance frequency of riffle and pool to analyze correlation between physical disturbance and physical habitat. According to the analysis result, it was identified that the analysis of riffle and pool showed similar result as the evaluation result of physical habitat.

Design of Stable Evaporative Micro-channel Systems Using Expanding Area (확장 면적을 이용한 안정된 증발 마이크로채널 시스템의 설계)

  • Lee, Hee-Joon;Yao, Shi-Chune
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.831-838
    • /
    • 2011
  • A growing bubble can be squeezed for water, and it will then encounter flow instability, which reverses toward upstream in straight micro-channels. To reduce the flow instability, a micro-channel that expands at the downstream end has been found to be effective. In the expanding area, a growing bubble will tend to move downstream because the net surface tension force of a vapor-liquid interface is inversely proportional to the local radius of curvature. We propose a static flow instability model and validate it experimentally. Moreover, we apply the local-instability parameter concept to the real design of a stable evaporative micro-channel with an expanding area. Based on the localinstability model, we establish a static design for stable expanding evaporative micro-channels.

Stable Channel Analysis and Design for the Abandoned Channel Restoration Site of Cheongmi Stream using Regime Theory (평형하상 이론을 이용한 청미천 구하도 복원 대상구간의 안정하도 평가 및 설계)

  • Ji, Un;Julien, Pierre Y.;Kang, Joon Gu;Yeo, Hong Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.305-313
    • /
    • 2010
  • River restoration or rehabilitation should be conducted in a way to maximize the channel stability with natural river configuration close to the equilibrium condition considering divers aspects of fluvial hydraulics, erosion and sedimentation, fluvial geomorphology, and ecological environment and to minimize the maintenance work. Therefore, the channel stability evaluation for present condition based on the equilibrium channel concept should be preceded for the river restoration project. Methods for equilibrium channel theory have generally been developed following either analytical regime theory or empirical regime theory. The main purpose of this paper is to evaluate the stability of present channel condition for the section of abandoned channel restoration in Cheongmi Stream using the Stable channel Analytical Model (SAM) and equilibrium hydraulic geometry equations. The results of analytical and empirical regime theories should provide fundamental and essential information to design the stable channel geometry. As a calculation result of Copeland's method for the study reach, the equilibrium channel has a narrower channel width, deeper water depth, and more gentle slope than the present channel geometry. As results of equilibrium hydraulic geometry equations, predicted equilibrium widths are less than the channel width in the field. It is represented that the current bed slope must be gentle to reach the equilibrium condition according to the results of Julien and Wargadalam method.

Analysis of Physical Disturbance according to Optimizing of Low-Flow Channel Width for Stable Channel Design and Physical Habitat Improvement (안정하도 설계와 어류서식처 개선을 위한 저수로 폭의 최적화에 따른 물리적 교란 분석)

  • Choi, Seung Je;Lee, Woong Hee;Choi, Heung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.290-290
    • /
    • 2017
  • 본 연구는 안정하도 설계를 위해 대상구간으로 원주천 16 km, 20개 횡단면에 대하여 SCAD(Stable Channel Analysis Design)를 이용한 안정하폭 평가를 실시하였다. 안정하폭은 하폭이 증가와 감소로 20%의 허용범위를 적용하였다. 안정하폭의 설계와 물리서식처의 개선을 위해 저수로 폭의 최적 설계를 제시하기 위해 유전자알고리즘을 이용하였다. 물리서식처 개선은 원주천의 하천환경조사와 어류의 군집특성을 이용하여 수중생태계를 대표 할 수 있는 복원 목표어종으로 참갈겨니를 선택하였다. 참갈겨니의 서식적합지수 (HSI, Habitat Suitability Index)를 사용한 서식 적합도 분석은 River2D 모형을 이용하였다. 그에 따라 안정하도 설계와 물리서식처의 개선을 위한 각 단면의 최적 저수로 폭을 제시하였다. 개선된 하천구조에 대한 물리적 교란개선 평가를 실시하였다. 대산구간을 40개 구간으로 분할하여 각 구간의 물리적 교란개선 평가를 수행하여 안정하도 설계와 물리서식처 개선을 위한 하천구조의 개선에 따른 물리적 교란 양상을 평가 분석하였다.

  • PDF

Proper Conditions of Structure to Prevent Eddy Creation in Cooling Water Intake Canal of Stream Power Plant (화력발전소 냉각 취수로내의 와류발생 방지를 위한 구조물의 적정조건검토)

  • 조진훈;천만복
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.465-472
    • /
    • 1999
  • Hydraulic model tests are performed to find economical and hdrqulically stable design of cooling water intake channel of steam power plant. The result of tests show that the standard distributiion of y-components in the chamber of CWP(circulating Water Pump) are recommended below 3.5 to maintain hydraulic stability, so that this value is considered as the design criteria. Common basin is necessary to improve the hydraulic stability of inflow, however the longer basin does not always improve the hydraulic stability , and the optimal length of basin can be found in some range. From the results the flow stability maintained the best condition when the length of basin is 7.2m. Beside the standard tests the auxiliary tests like edge , baffle, trapezoidal section and increase of pump capacity are carried out based on the optimal condition foudn in the standard tests. From the series of tests the economical and hydraulically stable design of intake channel was proposed.

  • PDF

Two-Dimensional Flow Analysis of Approach Channel for the Design of Spillway Guidewall (여수로 유도벽 설계를 위한 접근수로의 2차원 흐름해석)

  • Lee, Gil-Seong;Kim, Nam-Il
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.491-501
    • /
    • 1998
  • Numerical simulations were performed to analyse the flow pattern of the approach channel and to design the spillway guidewall for stable flow conditions. RMA-2, two dimensional finite element model which can easily represent complicated geometry was used, and model parameters were estimated from the observation data of hydraulic model test. Numerical experiments were made separately for the approach region and for the upstream region, and upstream boundary position of the hydraulic model beyond which the boundary effects are negligible was determined from the numerical results. For the stable flow condition in approach channel, alternative designs for guidewall were developed, and flow analysis for alternative designs was done through the numerical simulation. From the analysis of alternative design, we can see that the flow pattern in the approach channel is stable and the lateral stage difference disappears mostly before the spillway crest.

  • PDF

Design of M-Channel IIR Uniform DFT Filter Banks Using Recursive Digital Filters

  • Dehghani, M.J.;Aravind, R.;Prabhu, K.M.M.
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.345-355
    • /
    • 2003
  • In this paper, we propose a method for designing a class of M-channel, causal, stable, perfect reconstruction, infinite impulse response (IIR), and parallel uniform discrete Fourier transform (DFT) filter banks. It is based on a previously proposed structure by Martinez et al. [1] for IIR digital filter design for sampling rate reduction. The proposed filter bank has a modular structure and is therefore very well suited for VLSI implementation. Moreover, the current structure is more efficient in terms of computational complexity than the most general IIR DFT filter bank, and this results in a reduced computational complexity by more than 50% in both the critically sampled and oversampled cases. In the polyphase oversampled DFT filter bank case, we get flexible stop-band attenuation, which is also taken care of in the proposed algorithm.

  • PDF