DOI QR코드

DOI QR Code

Physical Disturbance Improvement Evaluation and Habitat Suitability Analysis by Stable Channel Design

안정하도 설계에 따른 물리적 교란개선 평가와 서식적합도 분석

  • 이웅희 (상지대학교 건설시스템공학과) ;
  • 최흥식 (상지대학교 건설시스템공학과)
  • Received : 2016.10.31
  • Accepted : 2016.12.20
  • Published : 2016.12.31

Abstract

This study conducted the evaluations of stable channel and physical disturbance improvement for optimal construction of river structures by focusing on Wonju River. A stable slope was analyzed sectionally for stable channel design, and in order to satisfy the stable slope, river structure improvement scenarios were deduced. Accordingly, through physical disturbance improvement evaluation for each scenario, the study extracted the optimal scenario for stable channel design and physical disturbance improvements. The changes in physical habitat were analyzed when river structure improvements were made for stable channel design and physical disturbance improvement. Zacco koreanus, an indicator fish of the soundness of the aquatic ecosystem, was selected as a restoration target species by investigating the community characteristics of fish fauna and river environments in the Wonju River. The habitat suitability was investigated by the PHABSIM model with the habitat suitability index of Zacco koreanus. The results of the prediction evaluation showed a slight decrease in habitat suitability and weighted usable area. However, it was not influenced by the improvements in the river structure. The study suggested river structure arrangement methods that can improve physical soundness and safety of Wonju River, and confirmed that there were no effects to the changes in the physical habitat.

본 연구는 원주천을 대상으로 하천시설물의 최적 설계를 위한 안정하도 평가와 물리적 교란개선 평가를 수행하였다. 안정하도 설계를 위한 구간별 안정경사를 분석하였으며, 안정경사를 만족하기 위한 하천시설물의 개선 시나리오를 도출하였다. 그에 따라 각 시나리오에 대한 물리적 교란개선 평가를 통해 안정하도 설계와 물리적 교란개선을 위한 최적의 시나리오를 선정하였다. 아울러 안정하도 설계와 물리적 교란개선을 위한 하천시설물의 개선 시 물리 서식처의 변화를 분석하였다. 원주천의 하천 환경조사와 어류의 군집특성을 이용하여 수중 생태계를 대표할 수 있는 복원 목표어종으로 참갈겨니를 선택하였다. 참갈겨니의 서식적합지수를 사용한 서식적합도 분석은 PHABSIM 모형을 이용하였다. 예측 평가를 수행한 결과 서식적합도와 가중가용면적은 소폭 감소하는 것으로 나타났으나, 하천시설물의 개선에 따른 영향은 아닌 것으로 나타났다. 따라서 원주천의 물리적 건전성과 안정성을 제고할 수 있는 하천시설물의 배치 방안을 제시하였으며, 그에 따른 물리 서식처의 변화는 영향이 없는 것을 확인하였다.

Keywords

References

  1. Ackers, P. and White, W.R. 1973. Sediment transport: new approach and analysis. Journal of Hydraulics Division, ASCE 99: 2041-2060.
  2. Bovee, K.D., Lam, B.L., Bartholow, J.M., Stalnaker, C.B., Taklor, J. and Henriksen, J. 1998. Stream Habitat Analysis Using the Instream Flow Incremental Methodology. Biological Resources Division Information and Technology Report, USGS, Fort Collins, Colorado, USA.
  3. Brownlie, W.R. 1981. Prediction of Flow Depth and Sediment Transport in Open Channels Report No. KH-R-43A, Institute of Technology, California, USA.
  4. Choi, G.W., Kim, H.J., Park, J.S. and Han, M.S. 2010. Hydromorphological structure assessment of urban streams after close-to-nature stream restoration using LAWA. Journal of Korea Water Resources Association 43: 421-431. (in Korean) https://doi.org/10.3741/JKWRA.2010.43.5.421
  5. Choi, H.S. and Lee, W.H. 2014. Analyses of riverbed changes and physical disturbance evaluations by weir installation in a reach. Journal of the Korean Society of Civil Engineers 34: 1203-1213. (in Korean) https://doi.org/10.12652/Ksce.2014.34.4.1203
  6. Choi, H.S. and Lee, W.H. 2015. A correlation analysis between physical disturbance and fish habitat suitability before and after channel structure rehabilitation. Ecology and Resilient Infrastructure 2: 33-41. (in Korean) https://doi.org/10.17820/eri.2015.2.1.033
  7. Choi, H.S., Shim, K.R. and Lee, W.H. 2015. An improvement and applicability of physical disturbance evaluation technique by quantification in river system. Journal of Wetlands Research 17: 209-220. (in Korean) https://doi.org/10.17663/JWR.2015.17.3.209
  8. Copeland, R.R. 1994. Application of Channel Stability Methods-Case Studies. Technical Report No. HL-94-11, United States Army Corps of Engineers. Mississippi, USA.
  9. CRAES. 2012. Technical Regulation for Assessment of River Health. Chinese Research Academy of Environmental Sciences, Beijing, China.
  10. Engelund, F. and Hansen, E.E. 1967. A Monograph of Sediment Transport in Alluvial Rivers. Technical University of Denmark, Copenhagen.
  11. Environment Australia. 2000. Australian River Assessment System: Review of Physical River Assessment Methods-A Biological Perspective. Monitoring River Health Initiative Technical Report, Report Number 21. Canberra, Australia.
  12. Hesselink, A.W., Kleinhans, M.G. and Boreel, G.L. 2006. Historic discharge measurements in three Rhine branches. Journal of Hydraulic Engineering 132: 140-145. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(140)
  13. Ji, U. and Jang, E.K. 2015. Stable channel design for the gravel-bed river considering design constraints. Journal of the Korea Academia-Industrial Cooperation Society 16: 2860-2867. (in Korean) https://doi.org/10.5762/KAIS.2015.16.4.2860
  14. Ji, U., Julien, P.Y., Kang, J.U. and Yeo, H.K. 2010. Stable channel analysis and design for the abandoned channel restoration site of Cheongmi stream using regime theory. Journal of Korea Society of Civil Engineers 30: 305-313. (in Korean)
  15. Jia, Y.T. and Chen, Y.F. 2013. River health assessment in a large river: Bioindicators of fish population. Ecological Indicators 26: 24-32. https://doi.org/10.1016/j.ecolind.2012.10.011
  16. Jo, Y.H. 1997. Development of an Evaluation Method of Stream Naturalness for Ecological Restoration of Stream Corridors. Ph.D. Dissertation, University of Seoul, Korea. (in Korean)
  17. LAWA. 2000. Gewasserstrukturgutekartierung in der BRD. 1. Auf. Schwerin. Landerarbeitsgemeinschaft Wasser, Stuttgart, Germany. (in German)
  18. Meyer-Peter, E. and Müller, R. 1948. Formulas for bed-load transport. Proceeding of 2nd Meeting of the International Association for Hydraulic, International Association of Hydraulic Research Delft, Sweden, 39-64.
  19. Ministerium fur Umwelt. 2005. Gewasserstrukturgute in Nordrhein-Westfalen. Dusseldorf, Germany. (in German)
  20. MOCT. 1999. Basic Plan for River Maintenance of Wonju Stream. Ministry of Construction and Transportation, Gwacheon, Korea. (in Korean)
  21. Tiegs, S.D., O'leary, J.F., Pohl, M.M. and Munill, C.L. 2005. Flood disturbance and riparian species diversity on the Colorado river delta. Biodiversity and Conservation 14: 1175-1194. https://doi.org/10.1007/s10531-004-7841-4
  22. Soar, P.J. and Thorne, C.R. 2001. Channel Restoration Design for Meandering Rivers. ERDC/CHL CR-01-1, U.S. Army Corps of Engineers. Washington DC, USA.
  23. Stein, J.L., Stein, J.A. and Nix, H.A. 2002. Spatial analysis of anthropogenic river disturbance at regional and continental scales: identifying the wild rivers of Australia. Landscape and Urban Planning 60: 1-25. https://doi.org/10.1016/S0169-2046(02)00048-8
  24. USDA. 1998. Stream Visual Assessment Protocol. National Water and Climate Center Technical Note 99-1. United States Department of Agriculture, Washington DC, USA.

Cited by

  1. 물리적 교란 저감을 위한 안정하도의 설계와 서식적합도 분석 vol.4, pp.3, 2017, https://doi.org/10.17820/eri.2017.4.3.169
  2. 생물서식지 적합성 평가를 위한 Delft3D와 HABITAT 모델의 연계 적용 vol.37, pp.3, 2021, https://doi.org/10.15681/kswe.2021.37.3.217