This study examined the first- and second-best pricing by stable dynamics in congested transportation networks. Stable dynamics, suggested by Nesterov and de Palma (2003), is a new model which describes and provides a stable state of congestion in urban transportation networks. The first-best pricing in user equilibrium models introduces user-equilibrium in the system-equilibrium by tolling the difference between the marginal social cost and the marginal private cost on each link. Nevertheless, the second-best pricing, which levies the toll on some, but not all, links, is relevant from the practical point of view. In comparison with the user equilibrium model, the stable dynamic model provides a solution equivalent to system-equilibrium if it is focused on link flows. Therefore the toll interval on each link, which keeps up the system-equilibrium, is more meaningful than the first-best pricing. In addition, the second-best pricing in stable dynamic models is the same as the first-best pricing since the toll interval is separately given by each link. As an effect of congestion pricing in stable dynamic models, we can remove the inefficiency of the network with inefficient Braess links by levying a toll on the Braess link. We present a numerical example applied to the network with 6 nodes and 9 links, including 2 Braess links.
This study is a generalization of 'stable dynamics' recently suggested by Nesterov and de Palma[29]. Stable dynamics is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with user equilibrium model that is common in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on the congestion. Therefore it is expected to be an useful analysis tool for transportation planners. An equilibrium in stable dynamics needs only maximum flow in each arc and Wardrop[33] Principle. In this study, we generalize the stable dynamics into the model with multiple traffic classes. We classify the traffic into the types of vehicle such as cars, buses and trucks. Driving behaviors classified by age, sex and income-level can also be classes. We develop an equilibrium with multiple traffic classes. We can find the equilibrium by solving the well-known network problem, multicommodity minimum cost network flow problem.
A regional economy is characterized as a spatial economy. However the literature shows that it has been treated as a point economy since space is little recognized in regional modeling due to mathematical complication. This leads to the fact that regional model does not sufficiently represent regional characteristic. This paper attempts to construct a regional growth model in a partial equilibrium framework specifically taking into consideration land as a primary factor. The model is formulated largely neoclassical. Labor is assumed to move in response to differences in the wage rate, while capital is perfectly mobile across regions. The paper shows that two growth equilibrium points exist, one stable equilibrium point and the other unstable equilibrium point. The unstable growth equilibrium indicates the existence of minimum threshold that a region must overcome the minimum threshold to grow constantly. Consequently, directions of regional growth are characterized by two growth paths depending on the initial condition of a region. That is to say, a region below the minimum threshold is converging toward the lower stable equilibrium point over time. When a regional economy initially lies above the minimum threshold, it will grow forever. A regional economy is not thus necessarily converging a stationary is not thus necessarily converging a stationary equilibrium point through factor movement. Finally, the impacts of the presence of agglomeration economies and diseconomies are analyzed through the phase diagram. The paper also shows that agglomeration economies result in lowering the minimum threshold and in escalating the level of stable equilibrium However, when agglomeration diseconomies prevail, the results are opposite, i.e., rising the minimum threshold of growth and lowering the growth level of stable equilibrium.
We have calculated the energy of three distinct grain configurations, namely completely connected, partially connected and unconnected configurations, evolving during a spheroidization of polycrystalline thin film by extending a geometrical model due to Miller et al. to the case of spheroidization at both the surface and film-substrate interface. "Stabilitl" diagram defining a stable region of each grain configuration has been established in terms of the ratio of grain size to film thickness vs. equilibrium wetting or dihedral angles at various interface energy conditions. The occurrence of spheroidization at the film-substrate interface significantly enlarges the stable region of unconnected grain configuration thereby greatly facilitating the occurrence of agglomeration. Complete separation of grain boundary is increasingly difficult with a reduction of equilibrium wetting angle. The condition for the occurrence of agglomeration differs depending on the equilibrium wetting or dihedral angles. The agglomeration occurs, at low equilibrium angles, via partially connected configuration containing stable holes centered at grain boundary vertices, whereas it occurs directly via completely connected configuration at large equilibrium angles except for the case having small surface and/or film-substrate interface energy. The initiation condition of agglomeration is defined by the equilibrium boundary condition between the partially connected and unconnected configurations for the former case, whereas it can, for the latter case, largely deviate from the equilibrium boundary condition between the completely connected and unconnected configurations because of the presence of a finite energy barrier to overcome to reach the unconnected grain configuration.
This study is for detecting the Braess Paradox by stable dynamics in general transportation networks. Stable dynamics, suggested by Nesterov and de Palma[18], is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with user equilibrium model based on link latency function in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on the congestion. Therefore it is expected to be an useful analysis tool for transportation planners. The phenomenon that increasing capacity of a network, for example creating new links, may decrease its performance is called Braess Paradox. It has been studied intensively under user equilibrium model with link latency function since Braess[5] demonstrated a paradoxical example. However it is an open problem to detect the Braess Paradox under stable dynamics. In this study, we suggest a method to detect the Paradox in general networks under stable dynamics. In our model, we decide whether Braess Paradox will occur in a given network. We also find Braess links or Braess crosses if a network permits the paradox. We also show an example how to apply it in a network.
In this study, we investigated the dynamic stability of the system and the semi-analytical solution of the shallow arch. The governing equation for the primary symmetric mode of the arch under external load was derived and expressed simply by using parameters. The semi-analytical solution of the equation was obtained using the Taylor series and the stability of the system for the constant load was analyzed. As a result, we can classify equilibrium points by root of equilibrium equation, and classified stable, asymptotical stable and unstable resigns of equilibrium path. We observed stable points and attractors that appeared differently depending on the shape parameter h, and we can see the points where dynamic buckling occurs. Dynamic buckling of arches with initial condition did not occur in low shape parameter, and sensitive range of critical boundary was observed in low damping constants.
This study developed a variable demand traffic assignment model by stable dynamics. Stable dynamics, suggested by Nesterov and do Palma[19], is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with the user equilibrium model, which is based on the arc travel time function in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on congestion. It is therefore expected to be a useful analysis tool for transportation planners. In this study, we generalize the stable dynamics into the model with variable demands. We suggest a three stage optimization model. In the first stage, we introduce critical travel times and dummy links and determine variable demands and link flows by applying an optimization problem to an extended network with the dummy links. Then we determine link travel times and path flows in the following stages. We present a numerical example of the application of the model to a given network.
In this paper, a class of more general delayed viral infection model with lytic immune response is proposed by Song et al.[1] ([Journal of Mathematical Analysis Application 373 (2011), 345-355). We derive the basic reproduction numbers $R_0$ and $R_0^*$ 0 for the viral infection, and establish that the global dynamics are completely determined by the values of $R_0$ and $R_0^*$. If $R_0{\leq}1$, the viral-free equilibrium $E_0$ is globally asymptotically stable; if $R_0^*{\leq}1$ < $R_0$, the immune-free equilibrium $E_1$ is globally asymptotically stable; if $R_0^*$ > 1, the chronic-infection equilibrium $E_2$ is globally asymptotically stable by using the method of Lyapunov function.
This paper presents the solution of large static deflection due to uniformly distributed self weight and the critical or maximum applied uniform loading that a simply supported beam with variable-arc-length can resist. Two analytical approaches are presented and validated experimentally. The first approach is a finite-element discretization of the span length based on the variational formulation, which gives the solution of large static sag deflections for the stable equilibrium case. The second approach is the shooting method based on an elastica theory formulation. This method gives the results of the stable and unstable equilibrium configurations, and the critical uniform loading. Experimental studies were conducted to complement the analytical results for the stable equilibrium case. The measured large static configurations are found to be in good agreement with the two analytical approaches, and the critical uniform self weight obtained experimentally also shows good correlation with the shooting method.
In this research an equilibrium point of a Wheeled Inverted Pendulum (WIP) running on an inclined road is derived and validated by some experiments. Generally, The WIP has stable and unstable equilibrium point. Only unstable equilibrium point is interested in the research. To keep the WIP on the unstable equilibrium point, the WIP is consistently controlled. A controller for the WIP needs a reference state for the equilibrium point. The reference state can be obtained by studying an equilibrium point of the WIP. This research is deriving dynamic equations of the WIP running on the inclined road and equilibrium of it based on statics. Several experiments are carried out to show the validation of the equilibrium point.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.