• Title/Summary/Keyword: Stabilizer layer

Search Result 72, Processing Time 0.029 seconds

Strength and Deformation Characteristics on Stabilized Pavement Geomaterials (II) : Numerical Analysis (안정처리된 도로하부 지반재료의 강도 및 변형특성 (II) : 수치해석)

  • Park, Seong-Wan;Ji, Jong-Keun
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.205-216
    • /
    • 2009
  • As a subsequent study, this paper presents a comparative evaluation of structural responses in asphalt pavements with stabilized foundations. The approach based on a finite element analysis which incorporates non-linear behaviors of pavement geomaterials is used to estimate each performance indicator under standard single axle loading condition. In addition, results from laboratory tests are used to provide physical and mechanical properties of stabilized geomaterials for analyzing various pavement structures. Changes in pavement responses with varying layer thickness and stabilizer contents were investigated. It is found that the effect of layer thickness and stabilizer content is a critical factor in structural response of stabilized pavements. Moreover, a design criterion is proposed for selecting minimum contents of stabilizer of coarse-grained geomaterials based on a result of unconfined compressive strength and proper layer thickness of foundations.

  • PDF

안정화 층에 따른 YBCO 박막형 선재의 통전 특성에 관한 연구

  • Du, Ho-Ik;Kim, Min-Ju;Kim, Yong-Jin;Lee, Dong-Hyeok;Han, Byeong-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.214-214
    • /
    • 2009
  • While critical properties of BSCCO wires rely considerably on grid direction upon BSCCO and have very complicated mechanism of generating a superconducting phase, making it difficult to improve properties of wires, YBCO thin-film wires which can be formed in a superconducting phase upon metal board through vapor deposition processing can get excellent direction and reduce manufacturing costs with more flexibility in improving critical properties; thus, they will be suitable for instrument application in the future. Contrary to BSCCO wires for which thick silver alloy covering materials should inevitably be used, moreover, YBCO thin-film wires have an advantage of making thickness and quality of covering materials different by usage. Such a property can be an important element to widen application of wires by presenting possibility of using thin-film wires as superconducting material for fault current limiter as well as for high power current application. In this study we intend to prepare YBCO thin-film wires with different stabilizer layers to analyze current application and current restriction properties by stabilizer layers on the basis of detailed researches on changes in current classification properties below critical value.

  • PDF

Effect of transport current properties on connecting of YBCO Coated Conductor having stabilizer layer and BSCCO tape (안정화 층을 갖는 YBCO Coated Conductor와 BSCCO 선재의 결합이 과전류 통전 특성에 미치는 영향)

  • Kim, Min-Ju;Du, Ho-Ik;Yim, Seong-Woo;Park, Chung-Ryul;Choi, Byung-Hwan;Doo, Seung-Gyu;Kim, Yong-Jin;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.290-291
    • /
    • 2008
  • Recently High Temperature Superconductor(HTS) Tape is limelight of the applied superconducting machines. Mainly used superconducting tape are BSCCO tape and YBCO coated tape. These superconducting tape are applied such as SMES, superconducting generator and MAGLEV. Actually superconductor tape's experimental gauge is short. For this reason, experiment was conducted. Firstly length of 50cm BSCCO, YBCO Coated conductor@Cu and YBCO coated conductor@sus are prepared. and flow the over-current. Secondly, BSCCO and Coated conductor connected with lenth of 25cm and flow the over-current. Coupled line of HTS tape was compared with single line of HTS tape and these overcurrent characteristics was investigated.

  • PDF

Performance evaluation of differently structured RCE-DR GdBCO coated conductor tapes under uniaxial tension at 77 K

  • Diaz, Mark Angelo E.;Shin, Hyung-Seop;Jung, Ho-Sang;Lee, Jaehun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.13-17
    • /
    • 2022
  • The mechanical properties of REBCO coated conductor (CC) tapes under uniaxial tension are mainly determined by the thick layer Components like the substrate and the stabilizer. Depending on the applications of the CC tapes, it is also needed to externally reinforce thin metallic foils to one side or both sides of the CC tapes. This study investigated the effect of additional stabilizer layers or lamination on the electrical resistivity and electromechanical properties in RCE-DR processed GdBCO CC tapes with different structures. The strain/stress tolerance of Ic in differently processed 12 mm-wide REBCO CC tapes under uniaxial tension at 77 K and self-field could be determined by the loading-unloading scheme. As a result, Sn-Cu stabilized CC tape showed a significant decrease in mechanical properties due to its soft but thick stabilizing layer. However, similar electromechanical properties have been observed on both Sn-Cu and Sn-stabilized CC tapes, the Ic degradation behavior was independent of whether the CC tape has an external reinforcement or different stabilizing layers.

Characterization of electromechanical properties of Sn-Cu double layer stabilized GdBCO coated conductor tapes at 77 K

  • Shin, Hyung-Seop;Diaz, Mark Aangelo;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.26-30
    • /
    • 2017
  • The promising characteristics of 2G high-temperature superconductor (HTS) coated conductor (CC) tapes have made it possible to apply to various electrical device applications. In this study, the mechanical and electromechanical properties of Sn-Cu double layer stabilized GdBCO CC tapes have been characterized. The stress and strain tolerances of $I_c$ in GdBCO CC tapes adopting stainless steel substrate were evaluated using $I_c$-strain measurement at 77 K under both uniaxial tension and monotonic bending conditions. The results were compared to the conventional single Cu layer stabilized CC tape. As a result, the Sn-Cu double layer stabilized GdBCO CC tapes showed somehow lower or comparable electromechanical properties as compared to the Cu stabilized CC tape ones.

Preparation of Cosmeceuticals Containing Broussonetia kazinoki Extracts: Optimization Using Central Composite Design Method (닥나무 추출물이 함유된 Cosmeceuticals의 제조: 중심합성계획모델을 이용한 최적화)

  • Hong, Seheum;Park, Bo Ra;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.682-689
    • /
    • 2018
  • In this paper, the stability criteria of cosmeceuticals emulsion containing Broussonetia kazinoki extracts was established using the central composite design model. As optimization conditions of the emulsification using the central composite design model, concentrations of the emulsifier and emulsion stabilizer were used as a quantitative factor while emulsion stability index (ESI) and polydispersity index (PDI) were used as a reaction value. The targeted values of ESI and PDI were estimated as over 60% and the minimum number, respectively. Optimized concentrations of the emulsifier and emulsion stabilizer were 3.73 and 3.07 wt%, respectively, from the emulsification optimization based on ESI and PDI values. The estimated reaction values of ESI and PDI were 60% and 0.585, respectively. As concentrations of the emulsifier and emulsion stabilizer increased, the stability of the emulsion prepared tended to increase. The emulsifier was one of the most influential factors for ESI than the emulsion stabilizer. On the other hand, the PDI value was similarly affected by both the emulsion and emulsion stabilizer. The ESI of the cosmeceuticals emulsion prepared under experimental conditions deduced from the central synthesis planning model showed at least about 45% of the stability. However, all of the emulsions were separated after 4 weeks from the initial preparation. When the concentration of the emulsifier was more than 3.72 wt%, the ESI value was over 60%. Also the layer separation rate decreased with increasing the emulsion stabilizer concentration.

Preparation of Soft Etchant to Improve Adhesion Strength between Photoresist and Copper Layer in Copper Clad Laminates (CCL 표면과 포토리지스트와의 접착력 향상 위한 Soft 에칭액의 제조)

  • Lee, Soo;Moon, Sung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.512-521
    • /
    • 2015
  • In this research, environmental friendly organic acid containing microetching system to improve adhesion strength between photoresist resin and Copper Clad Laminate(CCL) was developed without using strong oxidant $H_2O_2$. Etching rate and surface contamination on CCL were examined with various etching conditions with different etchants, organic acids and additives. to develope an optimum microetching condition. Etching solution with 0.04 M acetic acid showed the highest etching rate $0.4{\mu}m/min$. Etching solution with the higher concentration of APS showed the higher etching rate but surface contamination on CCL is very serious. In addition, stabilizer solution also played an important role to control the surface contamination. As a result of research, the etching solution containing 0.04 M of acetic acid, 0.1 M of APS with 4 g/L of stabilizer solution(ST-1) was best to improve adhesion between CCL and photoresist resin as well as showed the most clean and rough surface with the etching rate of $0.37{\mu}m/min$.

A study on the Joining Properties of Bi-2212 High-Tc Superconducting Tube and Indium Solder (Bi-2212 고온초전도튜브와 인듐솔더의 접합특성연구)

  • Oh, S.Y.;Hyun, O.B.;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.179-183
    • /
    • 2006
  • As a material for SFCL(Superconducting Fault Current Limiter), BSCCO tube with metal stabilizer is a promising candidate, assuring the stability and large power capacity, For the application, the proper soldering technique, which overcome the difficulties of the joining between BSCCO and metal stabilizer, is required. In this study, after soldering In-Bi solder and In-Sn solder with BSCCO superconductor, welding properties between BSCCO and solders were investigated. Because ceramic materials is difficult to weld, Ag electro-plating on BSCCO 2212 is used for intermetallic layer. To find out the best welding condition for superconductor, soldering is tested in the maximum temperature from $155^{\circ}C\;to\;165^{\circ}C$ in the reflow oven. By investigating the composition and thickness of IMC (lntermetallic Compound) created in the reaction of Ag with solder, we analyzed the welding properties of High-Tc superconductor from a micro point of view.

  • PDF

Analysis of Over-current Characteristics in YBCO Coated Conductor (YBCO Coated Conductor의 과전류 특성해석)

  • Lee, C.;Nam, K.;Kang, H.;Ko, T.K.;Seok, B.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.693-694
    • /
    • 2006
  • In order to develop a high temperature superconducting(HTS) coil for the fault current limiter(FCL), the over-current characteristics in YBCO coated conductor(CC) with Ni-W alloy substrate are analyzed. The HTS wire is wound by bifilar winding method for resistive current limitation and it is operated in 65K sub-cooled nitrogen. In order to analyze the resistance and the temperature characteristics of the CC wire, an analysis program is developed considering all the composition materials except the buffer layer. Using this program, the temperature rise, the resistance development and the current limitation of CC are calculated depending on the applied voltage and the stabilizer materials. According to the analysis results, under the temperature restriction of 300K, the maximum voltage per meter is determined as 40V/m if the stabilizer is $25{\mu}m$ thick stainless steel at each side. Finally, the wire length needed for the distribution level HTS FCL is estimated.

  • PDF

Study on Resistance Increasement Tendency and Recovery Characteristics of YBCO Thin-film Wire Using Insulation Layer (절연 층이 고려된 YBCO 박막형 선재의 저항 증가 경향 및 회복 특성에 관한 연구)

  • Du, Ho-Ik;Kim, Yong-Jin;Lee, Dong-Hyeok;Han, Byoung-Sung;Song, Sang-Seob;Lee, Jeong-Su;Han, Sang-Chul;Lee, Jung-Phil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.190-190
    • /
    • 2010
  • The resistance and recovery properties of the YBCO thin-film wire according to the existence and thickness of an insulting layer, and the kinds of stabilization layers, were analyzed at 90 K, 180 K and 250 K. In this study, YBCO thin-film wires with different stabilizing layers and with insulating layers were examined in terms of their various characteristics, such as quenching occurrence, spread, and distribution, based on their resistance increase trends and their recovery from quenching, and the results were qualitatively explained. The results of this study on the characteristics of YBCO thin-film wires' superconducting and normal-conducting phase changes are expected to be useful in designing superconducting power machines and in improving their performance.

  • PDF