• Title/Summary/Keyword: Stability of the embankment

Search Result 202, Processing Time 0.024 seconds

Stability of embankment above Compulsory Replacement layer (강제치환 상부 성토제체의 안정성에 관한 연구)

  • 신현영;김병일;정승용;김수삼
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.392-398
    • /
    • 2000
  • When soft ground improvement is proceeded in costal area using compulsory replacement method, it is very important that the method of stability of embankment above replacement layer can be obtained if non-replaced soft layer is remained, and there are a lot of influence factors which affect the stability of embankment, such as replacement depth, the water content of dredged soil and the width of replacement layer, etc. If soft layer was replaced completely by good quality materials, there would be no problems about stability of embankment, but practically non-replaced layer would be remained as the strength of soft layer will be increased. So another consideration is required to get the stability of embankment. In this study, stability of embankment among these factors was compared, and from that results, the better way that could obtain the stability was presented.

  • PDF

Variation of Seepage Line through Embankments by Permeability of Layer (지반의 투수성에 따른 제체 침투류의 변화)

  • 신진환;이봉직
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 1996
  • The movement of water through a river embankment and its influenced upon the stability of the slope of the embankment are described. The stability of the embankment is depended upon the location of seepage line. As the seepage flow occurs in the embankment, the slope of the embankment loses its stability. Of particular interest is the stability following a rapid change of water level. The variation of seepage line in the embankment model by a fluctuation of water level is discussed. The experimental models were construction with slopes of 1 : 1.5, 1 : 2.0, 1 : 2.5 and the flow velocity was turned from 60cm/sec~90cm/sec. Based on the experimental study, the following conclusions are drawn. 1) When water level is raised, the seepage line of downstream slope Is raised rapidly as flow velocity increases. 2) For the case of permeable layer, the seepage line raised rapidly as compare with impermeable layer when water lever is raised.

  • PDF

Limit analysis of 3D rock slope stability with non-linear failure criterion

  • Gao, Yufeng;Wu, Di;Zhang, Fei;Lei, G.H.;Qin, Hongyu;Qiu, Yue
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-76
    • /
    • 2016
  • The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.

응력-침투 연계 해석에 의한 필 댐의 최적 설계

  • Park, Chun-Sik;Lee, Jun-Suk;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.862-870
    • /
    • 2010
  • This thesis has been researched on optimized design method for the total cross section of embankment considering the fact that the size of embankment cross section is directly related with economic efficiency when dam designing. In general, embankment cross section of fill dam is either determined by cohesion and angle of internal friction, a strength parameter of embankment materials or by permeability of embankment. Therefore the size of embankment cross section depending on strength parameter of embankment materials was determined by using MIDAS-GTS program through stress-seepage coupled analysis at the time of fill dam design. As a result, determination of embankment cross section was more affected by the size of central core and permeability rather than by slope stability by shear strength and it was revealed that in case of embankment height being over 20m, stability against infiltration and slope action could be secured only when embankment slope is at least over 1:2.5. In addition, it was also revealed that in case of making the size of central core exceeding specification standard, total cross section of embankment could be reduced considerably and at the time of embankment design, adequate size and appropriateness of embankment cross section could be determined with referring the table suggested by this study.

  • PDF

A Study on the Stability Evaluation of Railway Embankment under Rainfall (강우시 철도 성토사면의 안정성 평가에 관한 연구)

  • 신민호;박영곤;김현기
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.4
    • /
    • pp.203-212
    • /
    • 2000
  • In order to evaluate the stability of railway embankment under rainfall, explanatory variables and subordinate variables were selected for multivariate analysis. Furthermore the site which had occurred failure due to rainfall was investigated, and by executing multivariate analysis for 121 cases, critical rainfall was defined by the case that had high value of correlation factor The maximum hourly rainfall during 24 hours before failure caused the collapse of railway embankment and could be used estimate the stability of railway embankment. From the result of application to a collapse example, the evaluaton method by critical rainfall curve is satisfactory.

  • PDF

The Analysis of the Slope Stability in Embankment(I) (제체의 사면안정 해석(I))

  • 최기봉
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.134-142
    • /
    • 1997
  • The stability of an embankment Impounding a water reservoir is highly depend upon the location of seepage line with the embankment. To evaluate the accurate safety factor of an embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid change (drawdown) of reservoir level Seepage forces in embankments are easily determined if frictional forces are expressed in relation to hydraulic gradient Ⅰ. If a piezometer is inserted into a body of embankment, the level to which free water rises is a measure of the energy at that point. From model test result, it is possible to calculate safety factors of earth embankment. To assure the validity of this research, tests were conducted with numerical experimental models. And the experiment models were constructed with slopes of 1:1.0, 1:1.5, 1:2.0, 1:2.5. Analysis of experimental results, seepage force was analyzed according to downstream time, internal friction angle and cohesion, respectively.

  • PDF

Variation of Slope Stability under rainfall considering Train Speed (열차의 속도 하중을 고려한 강우시 성토사면의 안정성 변화)

  • 김정기;김현기;박영곤;신민호;김수삼
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.601-607
    • /
    • 2002
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the stability of railway embankment and rainfall introducing the partial saturation concept of ground are defined to analyze the stability of embankment by rainfall. A pressure plate test is also peformed to obtain soil-water characteristic curve of unsaturated soils. Based on this curve, the variables in the shear strength function and permeability function are also defined. These functions are used fur the numerical model for evaluation of railway embankments under rainfall. As comparing the model and case studies, the variation of shear strength, the degree of saturation and pore-water pressure for railway embankment during rainfall can be predicted and the safety factor of railway embankment can be expressed as the function of rainfall amount namely rainfall index. Therefore, the research on safety factor on railway embankment considering train speed and rainfall infiltration with the variation of rainfall intensity and rainfall duration was carried out in this paper.

  • PDF

A Study on Stability of Marine Embankment Using Reliability Analysis (신뢰성해석을 이용한 호안제체의 안정성에 관한 연구)

  • 박준모;장연수;오세웅
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.789-796
    • /
    • 2003
  • A reliability analysis is performed to investigate the influence of the uncertainty from the limited in-situ samples and the inherent heterogeneity of the ground on the probability of piping for the marine embankment near shore. The result are compared with those of the deterministic piping stability analysis performed using the fininte element flow analysis. The random variables used are hydraulic conductivity of the ground subsurface and embankment, and the water level of both internal and external side of the embankment. The probability of piping is most sensitive to the mean and standard deviation of internal water level of the embankment among the random variables included in the reliability analysis. It is found that the lower limits of internal water level which satisfies the allowable proability of piping failure for the embankment studied were E.L(-) 1.83m and E.L(-) 1.48m during and after the construction of the embankment, respectively.

  • PDF

The Analysis of the Slope Stability for the Small Dam (Small Dam의 斜面安定 解析)

  • Choi, Ki-Bong;Bae, Woo-Soek
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.88-92
    • /
    • 2004
  • The paper decribes a procedure for the evaluation of the effect of seepage force on stability of slopes. The stability of an embankment impounding a water reservoir is highly depend upon the location of seepage line with the embankment. To evaluate the accurate safety factor of an embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid change of reservoir level. Seepage forces in embankments are easily determined interest is the stability following a rapid change of resrvoir level. Seepage forces in embankments are easily detemined if frictional forces are expressed in relation to hydraulic gradient I. If a piezometer is inserted into a body of embankment, the level to which fee water rises is a measure of the energy at that point.

A Study on the Stability of Embankment Due to the Construction of Embankment Combined Use Road (제방겸용도로 건설에 따른 제방 안정성 해석에 관한 연구)

  • Kim, Sung-Nam;Lee, Young-Woo
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.109-118
    • /
    • 2008
  • This study analyzes the change of stability of embankment due to the construction of embankment combined used road with two different construction phases. The stabilities have been checked both in the phase of earth banking for a road construction and in the phase of the application of the traffic roads(DB-24). In both cases the factor of safety has been found higher than 1.3 which is the general criterion of the safety of an embankment. The results indicate that the safety of an embankment due to the construction of embankment combined use road is assured, and thus, it is thought that the construction of embankment combined use road can be considered for cutting down on expenses of construction sites for a road construction. However, the pre-examination of stability due to the construction should be carried out because it decreases the factor of safety of an embankment. From this study, it has been found that the factor of safety was dropped most when the water level rose in the transient flow. The result indicates that the stability analysis of a river embankment where the water level changes frequently should be carried out in the condition of transient flow. It is recommended that the inner side of an embankment should have a slope of 1:2 which is identical with the slope of the existing embankment. In addition, the factor of safety also can be decreased due to the traffic loads, and therefore, the effect should also be considered after the construction of embankment combined used road limiting the traffic loads.

  • PDF