• 제목/요약/키워드: Stability of the embankment

검색결과 202건 처리시간 0.021초

강제치환 상부 성토제체의 안정성에 관한 연구 (Stability of embankment above Compulsory Replacement layer)

  • 신현영;김병일;정승용;김수삼
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.392-398
    • /
    • 2000
  • When soft ground improvement is proceeded in costal area using compulsory replacement method, it is very important that the method of stability of embankment above replacement layer can be obtained if non-replaced soft layer is remained, and there are a lot of influence factors which affect the stability of embankment, such as replacement depth, the water content of dredged soil and the width of replacement layer, etc. If soft layer was replaced completely by good quality materials, there would be no problems about stability of embankment, but practically non-replaced layer would be remained as the strength of soft layer will be increased. So another consideration is required to get the stability of embankment. In this study, stability of embankment among these factors was compared, and from that results, the better way that could obtain the stability was presented.

  • PDF

지반의 투수성에 따른 제체 침투류의 변화 (Variation of Seepage Line through Embankments by Permeability of Layer)

  • 신진환;이봉직
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.109-115
    • /
    • 1996
  • The movement of water through a river embankment and its influenced upon the stability of the slope of the embankment are described. The stability of the embankment is depended upon the location of seepage line. As the seepage flow occurs in the embankment, the slope of the embankment loses its stability. Of particular interest is the stability following a rapid change of water level. The variation of seepage line in the embankment model by a fluctuation of water level is discussed. The experimental models were construction with slopes of 1 : 1.5, 1 : 2.0, 1 : 2.5 and the flow velocity was turned from 60cm/sec~90cm/sec. Based on the experimental study, the following conclusions are drawn. 1) When water level is raised, the seepage line of downstream slope Is raised rapidly as flow velocity increases. 2) For the case of permeable layer, the seepage line raised rapidly as compare with impermeable layer when water lever is raised.

  • PDF

Limit analysis of 3D rock slope stability with non-linear failure criterion

  • Gao, Yufeng;Wu, Di;Zhang, Fei;Lei, G.H.;Qin, Hongyu;Qiu, Yue
    • Geomechanics and Engineering
    • /
    • 제10권1호
    • /
    • pp.59-76
    • /
    • 2016
  • The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.

응력-침투 연계 해석에 의한 필 댐의 최적 설계

  • 박춘식;이준석;김종환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.862-870
    • /
    • 2010
  • This thesis has been researched on optimized design method for the total cross section of embankment considering the fact that the size of embankment cross section is directly related with economic efficiency when dam designing. In general, embankment cross section of fill dam is either determined by cohesion and angle of internal friction, a strength parameter of embankment materials or by permeability of embankment. Therefore the size of embankment cross section depending on strength parameter of embankment materials was determined by using MIDAS-GTS program through stress-seepage coupled analysis at the time of fill dam design. As a result, determination of embankment cross section was more affected by the size of central core and permeability rather than by slope stability by shear strength and it was revealed that in case of embankment height being over 20m, stability against infiltration and slope action could be secured only when embankment slope is at least over 1:2.5. In addition, it was also revealed that in case of making the size of central core exceeding specification standard, total cross section of embankment could be reduced considerably and at the time of embankment design, adequate size and appropriateness of embankment cross section could be determined with referring the table suggested by this study.

  • PDF

강우시 철도 성토사면의 안정성 평가에 관한 연구 (A Study on the Stability Evaluation of Railway Embankment under Rainfall)

  • 신민호;박영곤;김현기
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.203-212
    • /
    • 2000
  • In order to evaluate the stability of railway embankment under rainfall, explanatory variables and subordinate variables were selected for multivariate analysis. Furthermore the site which had occurred failure due to rainfall was investigated, and by executing multivariate analysis for 121 cases, critical rainfall was defined by the case that had high value of correlation factor The maximum hourly rainfall during 24 hours before failure caused the collapse of railway embankment and could be used estimate the stability of railway embankment. From the result of application to a collapse example, the evaluaton method by critical rainfall curve is satisfactory.

  • PDF

제체의 사면안정 해석(I) (The Analysis of the Slope Stability in Embankment(I))

  • 최기봉
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.134-142
    • /
    • 1997
  • The stability of an embankment Impounding a water reservoir is highly depend upon the location of seepage line with the embankment. To evaluate the accurate safety factor of an embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid change (drawdown) of reservoir level Seepage forces in embankments are easily determined if frictional forces are expressed in relation to hydraulic gradient Ⅰ. If a piezometer is inserted into a body of embankment, the level to which free water rises is a measure of the energy at that point. From model test result, it is possible to calculate safety factors of earth embankment. To assure the validity of this research, tests were conducted with numerical experimental models. And the experiment models were constructed with slopes of 1:1.0, 1:1.5, 1:2.0, 1:2.5. Analysis of experimental results, seepage force was analyzed according to downstream time, internal friction angle and cohesion, respectively.

  • PDF

열차의 속도 하중을 고려한 강우시 성토사면의 안정성 변화 (Variation of Slope Stability under rainfall considering Train Speed)

  • 김정기;김현기;박영곤;신민호;김수삼
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.601-607
    • /
    • 2002
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the stability of railway embankment and rainfall introducing the partial saturation concept of ground are defined to analyze the stability of embankment by rainfall. A pressure plate test is also peformed to obtain soil-water characteristic curve of unsaturated soils. Based on this curve, the variables in the shear strength function and permeability function are also defined. These functions are used fur the numerical model for evaluation of railway embankments under rainfall. As comparing the model and case studies, the variation of shear strength, the degree of saturation and pore-water pressure for railway embankment during rainfall can be predicted and the safety factor of railway embankment can be expressed as the function of rainfall amount namely rainfall index. Therefore, the research on safety factor on railway embankment considering train speed and rainfall infiltration with the variation of rainfall intensity and rainfall duration was carried out in this paper.

  • PDF

신뢰성해석을 이용한 호안제체의 안정성에 관한 연구 (A Study on Stability of Marine Embankment Using Reliability Analysis)

  • 박준모;장연수;오세웅
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.789-796
    • /
    • 2003
  • A reliability analysis is performed to investigate the influence of the uncertainty from the limited in-situ samples and the inherent heterogeneity of the ground on the probability of piping for the marine embankment near shore. The result are compared with those of the deterministic piping stability analysis performed using the fininte element flow analysis. The random variables used are hydraulic conductivity of the ground subsurface and embankment, and the water level of both internal and external side of the embankment. The probability of piping is most sensitive to the mean and standard deviation of internal water level of the embankment among the random variables included in the reliability analysis. It is found that the lower limits of internal water level which satisfies the allowable proability of piping failure for the embankment studied were E.L(-) 1.83m and E.L(-) 1.48m during and after the construction of the embankment, respectively.

  • PDF

Small Dam의 斜面安定 解析 (The Analysis of the Slope Stability for the Small Dam)

  • 최기봉;배우석
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.88-92
    • /
    • 2004
  • The paper decribes a procedure for the evaluation of the effect of seepage force on stability of slopes. The stability of an embankment impounding a water reservoir is highly depend upon the location of seepage line with the embankment. To evaluate the accurate safety factor of an embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid change of reservoir level. Seepage forces in embankments are easily determined interest is the stability following a rapid change of resrvoir level. Seepage forces in embankments are easily detemined if frictional forces are expressed in relation to hydraulic gradient I. If a piezometer is inserted into a body of embankment, the level to which fee water rises is a measure of the energy at that point.

제방겸용도로 건설에 따른 제방 안정성 해석에 관한 연구 (A Study on the Stability of Embankment Due to the Construction of Embankment Combined Use Road)

  • 김성남;이영우
    • 한국도로학회논문집
    • /
    • 제10권3호
    • /
    • pp.109-118
    • /
    • 2008
  • 본 연구에서는 현재 실존하는 제방을 대상으로 제방겸용도로 건설에 따른 안정성의 변화를 살펴보기 위해 건설단계별로 도로건설을 위한 성토 후, 겸용도로 건설 후 도로를 주행하는 차량에 의한 교통하중이 재하될 경우로 구분하여 안정성 변화를 분석하였다. 연구결과 겸용도로 건설을 위한 성토 후와 교통하중(DB-24)을 적용하였을 경우 모두 일반적인 안전율 기준인 1.3을 상회하고 있어 겸용도로 건설에 따른 제방의 안전은 확보되는 것으로 분석되어 제방겸용도로의 건설은 부지 확보 비용 절감을 위해 건설이 가능할 것으로 판단된다. 그러나 겸용도로의 건설로 인해 제방의 안전율 감소 현상이 발생하기 때문에 안정성에 대한 사전 검토가 충분히 이루어져야 할 것이다. 특히 안전율 감소가 가장 큰 경우는 비정상류 상태의 수위상승의 경우로 분석되어 하천제방과 같이 수위변화가 빈번한 경우에는 비정상류 해석으로 설계하는 것이 바람직하며 제내지의 사면경사는 기존제방과 동일한 1:2의 경사를 유지하도록 설계하는 것이 필요할 것으로 판단된다. 또한, 교통하중에 의한 안전율 감소현상도 발생하는 것으로 분석되어 겸용도로 건설 후 주행차량의 하중제한 등 유지 관리에도 지속적인 관심을 기울여야 할 것으로 판단된다.

  • PDF