• Title/Summary/Keyword: Stability and Control

Search Result 6,705, Processing Time 0.05 seconds

STABILITY OF IMPULSIVE CONTROL SYSTEMS WITH VARIABLE TIMES

  • Zhao, Haiqing;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.345-352
    • /
    • 2007
  • In this paper, cone-valued Lyapunov functions are employed to study the impulsive control system with variable times. The stability criteria on the non-zero solution of the impulsive control system are given by the cone-valued Lyapunov functions and the results of the controllability on the control system are also obtained.

Investigation of muscle-specific beef color stability at different ultimate pHs

  • Wu, Shuang;Han, Jina;Liang, Rongrong;Dong, Pengcheng;Zhu, Lixian;Hopkins, David L.;Zhang, Yimin;Luo, Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1999-2007
    • /
    • 2020
  • Objective: This study was aimed to investigate the muscle-specific beef color stability at normal and high ultimate pHs. Methods: The impact of muscle (Longissimus lumborum [LL] vs psoas major [PM]) and pH (normal ultimate pH [Np] vs high pH dark cutting beef [Hp]) on color stability, indicated by basic color traits, metmyoglobin reducing activity (MRA) and oxygen consumption (OC), as well as the lipid oxidation, were determined over 7 days of display at 4℃. Results: Hp-LL had the highest pH (6.92), followed by Hp-PM (6.01), Np-PM (5.76), and Np-LL (5.52). Hp-LL had increased (p<0.05) a, chroma and % oxymyoglobin during display. Hp-LL also had the highest metmyoglobin (MMb) reducing activity and OC among all the samples, thus, the greatest color stability, although very dark throughout storage, with lowest values for lightness (L) and yellowness (b). Np-LL also exhibited relatively high color stability, as a result of its lower % MMb and OC and higher MRA than psoas muscle samples. The 0.2 unit difference of the pH between Hp and Np psoas muscle, resulted in the difference of the color intensity, not the color stability. Interestingly, high pH psoas muscle (Hp-PM) did not have better color stability than Np-PM, and in fact had lower color stability than even Np-LL. The similar level of OC and lipid oxidation cannot explain the difference in color stability between Hp-PM and Np-LL. Conclusion: The Hp does not always show better color stability compared with Np beef, which depends on the muscle type. The balance of MRA and OC is important to keep the color in great intensity and stability in the meantime.

Reference Model Feedback Control and Stability Evaluation for Control System with Hard Non-linearities (견비선형을 갖는 제어시스템에 대한 기준모델 피드백제어 및 안정성평가)

  • Jung, Yu-Chul;Lee, Gun-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.72-78
    • /
    • 2006
  • The paper proposes reference model error feedback control scheme for motion control system with hard non-linear components as like saturation and dead-zone in plant input part. Additionally, the plant has the system uncertainty effected by plant model parameter deviation and disturbance. The control algorithm uses the reference model to apply additional feedback loop with the error between reference model output and actual output effected by disturbance and non-linear components. And the stability evaluation based on Popov stability and controller design method are formulated to be performed. The effectiveness of the proposed scheme is examined by simulations. The results are proven by reasonable performances following reference model responses with good disturbance rejection performance without over-tuning of controller.

Analysis of Current Control Stability using PI Control in Synchronous Reference Frame for Grid-Connected Inverter with LCL Filter (LCL 필터를 사용하는 계통연계형 인버터의 동기좌표계 PI 전류제어 안정도 해석)

  • Jo, Jongmin;Lee, Taejin;Yun, Donghyun;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.168-174
    • /
    • 2016
  • In this paper, current control using PI controller in the synchronous reference frame is analyzed through the relationship among bandwidth, resonance frequency, and sampling frequency in the grid-connected inverter with LCL filter. Stability is investigated by using bode plot in frequency domain and root locus in discrete domain. The feedback variable is the grid current, which is regulated by the PI controller in the synchronous reference frame. System delay is modeled as 1.5Ts, which contains computational and PWM modulator delay. Two resonance frequencies are given at 815 Hz and 3.16 kHz from LCL filter parameters. Sufficient phase and gain margins can be obtained to guarantee stable current control, in case that resonance frequency is above one-sixth of the sampling frequency. Unstable current control is performed when resonance frequency is below one-sixth of the sampling frequency. Analysis results of stability from frequency response and discrete response is the same regardless of resonance frequency. Finally, stability of current control based on theoretical analysis is clearly verified through simulation and experiment in grid-connected inverters with LCL filter.

A New PID Controller with Lyapunov Stability for Regulation Servo Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.11-18
    • /
    • 2009
  • In this paper, the stability of second order uncertain systems with regulation of PID type controllers is analyzed by using Lyapunov second method for the first time in the time domain. The property of the stability of PID regulation servo systems is revealed in sense of Lyapunov, i.e., bounded stability due to the disturbances and uncertainties. By means of the results of this stability analysis, the maximum norm bound of the error from the output without variation of the uncertainties and disturbances is determined as a function of the gains of the PID control, which make it enable to analyze the effect resulted from the variations of the disturbances and uncertainties using this norm bound for given PID gains. Using the relationship of the error from the output without variation of the uncertainties and disturbances and the PID gain with maximum bounds of the disturbances and uncertainties, the robust gain design rule is suggested so that the error from the output without the variation of the disturbances and uncertainties can be guaranteed by the prescribed specifications as the advantages of this study. The usefulness of the proposed algorithm is verified through an illustrative example.

  • PDF

A study on comparative analysis of direct current control in A.C.-D.C. interconnected power system (교류-직류 연계계통에 있어서 직류제어방식의 비교연구)

  • 정형환;왕용필;안병철;이광우
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.474-483
    • /
    • 1996
  • In this paper, as a part of the method improving stability, the load-flow calculation in D.C. power system and the models for stability analysis are studied with A.C-D.C. interconnected power systems transmission performed. Moreover, the theory is established in relation to each control method of D.C. power systems. Then the stability of A.C-D.C.interconnected power systems is compared and considered by the way of dividing the operating control method of the rectifier inverter converter into ACR-AVR, APR-A.gamma.R, A.alpha.R-ACR. The dynamics characteristic of terminal voltage, frequency, active-reactive power and rotor angle of the generator with disturbances and load fluctuations is considered. In addition, the characteristic of direct voltage, direct current, power and control systems. From this the comparative analysis of the direct current control method, the possibility of the stability analysis of A.C.-D.C. interconnected power system is considered. (author). refs., figs., tabs.

  • PDF

A Study on the Flight Control Law and the Dynamic Characteristic about Variation of Feedback Gains of T-50 Lateral-Directional Axis (T-50 가로-방향축 비행제어법칙 설계 및 궤환이득의 변화에 따른 항공기 동특성에 관한 연구)

  • Kim Chong-Sup;Hwang Byung-Moon;Kang Young-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.621-630
    • /
    • 2006
  • The T-50 advanced trainer aircraft combines advanced aerodynamic features and a fly-by-wire flight control system in order to produce a stability and highly maneuverability. The flight control system both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 employs the RSS concept in order to improve the aerodynamic performance in longitudinal axis and the longitudinal control laws employ the dynamic inversion with proportional-plus-integral control method. And, lateral-directional control laws employ the blended roll system both beta-betadot feedback and simple roll rate feedback with proportional control method in order to guarantee aircraft stability. This paper details the design process of developing lateral-directional control laws, utilizing the requirement of MIL-F-8785C and MIL-F-9490D. And, this paper propose the analysis of aircraft characteristics such as dutch-roll mode, roll mode, spiral mode, gain and phase margin about gains for lateral-directional inner loop feedback.

The effect of a balance on deep abdominal muscles in an acute hemiplegic patient through stabilizing reversal, chopping and lifting (안정적 반전, 내려치기 그리고 들어올리기를 통한 하부체간 심층근육 강화운동이 초기 편마비 환자의 균형에 미치는 영향 - 증례 보고 -)

  • Jeon, Yoon-Seon;Lee, seung-hoon;Goo, Bong-Oh
    • PNF and Movement
    • /
    • v.7 no.4
    • /
    • pp.37-43
    • /
    • 2009
  • Purpose : The purpose of this study was to evaluate the effect of core stability training at deep abdominal muscle for balance control of hemiplegic patient. Method : The subject of this study was a 47-year-old man with right hemiplegia. He was treated five times a week for three weeks with core stability training at deep abdominal muscles. Evaluation tool was used Functional reach test(FRT), timed up and go test(TUG) and one leg standing for stroke patients. Result : The FRT distance increase, TUG time decrease, one leg standing time increase core stability training at deep abdominal muscles for right hemiplegia improved was the ability for maintain balance. Posture and control of trunk stability are changing posture, and so which showed significant improve of total balance control. Conclusion : The result of this study showed that core stability training at deep abdominal muscles is an effective treatment for balance control. Therefore, it could be considered as a treatment method in the rehabilitation of stroke patient with poor postural control and imbalance, although further studies are needed.

  • PDF

Variable Structure Model Reference Adaptive Control, for SIMO Systems

  • mohammadi, Ardeshir Karami
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1987-1992
    • /
    • 2004
  • A Variable Structure Model Reference Adaptive Controller (VS-MRAC) using state Variables is proposed for single input multi output systems. . The structure of the switching functions is designed based on stability requirements, and global exponential stability is proved. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time. The effect of input disturbances on stability and transients is investigated and shows preference to the conventional MRAC schemes with integral adaptation law. Sliding surfaces are independent of system parameters and therefore VS-MRAC is insensitive to system parameter variations. Simulation is presented to clear the theoretical results.

  • PDF

Response Characteristics Effectiveness of Power Converter According to Using of Error Compensator for PV Power System (태양광 전력설비를 위한 오차 보상기 사용의 전력변환기기에 대한 응답특성의 효과 검증)

  • Kim, Dong-Eun;Lee, Hyun-Jae;Shon, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1388-1394
    • /
    • 2018
  • In this paper, the improvement of the control response by using the error compensator to improve the stability of the control in the power conversion system is verified. Typically a closed loop control method is used to improve the control response characteristics in a traditional power conversion system and this is accomplished by generating a PWM waveform. In this paper, the newly constructed Type3 compensator to overcome the existing such as PI controller or Type2 compensator has been developed to improve the control stability of these closed loop control systems and the effectiveness of the use of error compensation devices was verified by presenting technique to improve stability and select its parameters by expanding the range of phase gains. Stability improvements are shown by the extension of the phase gain range and parameter selection techniques and the effects of using the error compensation device are verified accordingly.