• Title/Summary/Keyword: Stability Analysis

Search Result 10,494, Processing Time 0.04 seconds

Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces (침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

Stability Analysis of Networked Control System with Time Delay and Data Loss (시간 지연과 데이터 손실을 고려한 네트워크 제어시스템의 안정도 분석)

  • Jung Joonhong;Choi Sooyoung;Park Kiheon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.678-689
    • /
    • 2004
  • The major concern of networked control system is network uncertainties such as time delay and data loss. Because these uncertainties may degrade the performance of networked control system and destabilize the entire system. Therefore, the performance and the stability variation of networked control system due to network uncertainties must be considered first in designing networked control system. In particular, the stability analysis of networked control system is most important issue since time delay and data loss can make the overall systems unstable. In this paper, we present a new stability analysis method of networked control system with time delay and data loss, which is impossible in previous works. The proposed method can determine maximum time delay and allowable transmission rate that preserve stability performance of networked control system. The results of the simulation validate effectiveness of our stability analysis method.

Stability Analysis of Soil Oribatid Mite Communities (Acari: Oribatida from Namsan and Kwangreung Deciduous Forests, Korea

  • Jung, Chulue;Lee, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.239-243
    • /
    • 2001
  • One of the most important justifications of conservation of ecosystem and biodiversity is that diversity begets stability. Impact of biodiversity on community and ecosystem function has long been debated in science. Here we report the stability analysis of soil oribatid mite communities from environmentally stressed habitat(Namsan) and relatively well preserved habitat (Kwangreung) with the perspective of consistency as a primary criteria of stability. Stability of oribatid mite communities were evaluated with turnover rate, constancy analysis, b diversity index, and absolute abundance, abundance ranking, and the presence or absence of species over time. Out of 6 criteria, three consented that oribatid community from Kwangreung was more stable than that from Namsan. Those are turnover rate in litter layer, constancy analysis, and absolute abundance. Feasibility of stability analysis using oribatid mites was further discussed, rendering further study.

  • PDF

Three-dimensional Stability Analysis of Landslides in Unsaturated Soils: A Case Study (불포화 지반에서의 산사태 3차원 안정해석에 대한 사례연구)

  • Kim, Seong Jin;Oh, Seboong;Yoo, Young Geun;Shin, Ho Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.359-369
    • /
    • 2022
  • In slope stability analysis for landslides, mountains have various slopes and geographical features, and hence it is necessary to estimate stability using rigorous analysis methods. In this study, after the analysis of infiltration behavior through unsaturated layers due to rainfall, the stability of landslide was estimated to account for the variation of pore water pressures. In the analysis of slope stability, a three-dimensional slope analysis was compared with an infinite slope analysis in a case study of terrain in which an actual landslide occurred. In the three-dimensional slope stability analysis, it was found that the location of the failure and the failure area were predicted accurately based on the detailed geological information despite the variation of geographical features.

Evaluation on Optimal Height of the Bin Wall using Stability Analysis (안정해석을 통한 공동 일체식 옹벽의 최적높이 평가)

  • Bae, Woo-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.48-54
    • /
    • 2009
  • Structures to support against slop failures or resist earth pressure like masonry retaining walls or retaining walls have continued to advance and evolve to new eco-friendly, easy-to-construct, crib retaining walls with varied forms and construction methods, meeting the needs of the times. Researches until now, however, have focused on the analyses of site displacement or stability of the whole site including structures like retaining walls, and thus, researches on rational design or method for stability analysis are lacking. Therefore, this study was conducted on a number of stability analyses, such as the visual power line or stability on sliding, being presented for bin walls, which enable vegetation to grow and were developed and applied in varied forms, meeting the development demands for eco-friendly retaining wall structures. This study compared the results of stability analyses, determined their feasibility, and evaluated their stability according to the height and facade slope of retaining walls. According to the results of this study, traditional masonry retaining wall analysis showed rather conservative stability evaluation results in the stability evaluation of bin walls, and the method using the visual power line seems to be objective because it produced similar results to the stability evaluation method on sliding or turnover.

A Consideration on the Stability Analysis Method of Great Deep Tunnels (대심도 터널의 안정성 해석 방법에 대한 고찰)

  • 김주봉;안경철;김영준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.301-308
    • /
    • 1999
  • The construction of great deep tunnels has become an important part in tunnel construction especially in the mountain area. Therefore, it is necessary to establish the proper method of the stability analysis for great deep tunnels. In this paper presents the study result on the followings: (1) Evaluation of practical problem on the stability analysis of great deep tunnels. (2) Proposal of the proper on method for great deep tunnels analysis considering the depth of overburden. (3) Understanding of the ground behavior of the great deep tunnel through the sensitivity analysis and the parametric study.

  • PDF

Robust attitude control and analysis for 3-axis stabilized spacecraft using sliding mode control (슬라이딩 모드 제어를 이용한 3축 안정화 위성의 자세 제어및 강건성 해석)

  • 신동준;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.692-695
    • /
    • 1997
  • Nonlinear robust attitude controller for 3-axis stabilized spacecraft is designed. Robust stability analysis for nonlinear spacecraft system with disturbance is conducted. External disturbances and parametric uncertainties decrease Spacecraft's attitude pointing accuracy. Sliding Mode Control(SMC) provides stability of system in the face of these disturbances and uncertainties. The concept of quadratic boundedness and quadratic stability are applied to the robust analysis for the nonlinear spacecraft system subject to bounded disturbance torques. Numerical simulation is conducted to compare the analysis result and actual nonlinear simulation. The simulation show that analysis result is valid.

  • PDF

Proposal of a Mechanically Rigorous Slope Stability Chart (역학적으로 엄밀한 사면안정도표의 제안)

  • 김종민
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.121-129
    • /
    • 2004
  • In this study, a slope stability chart for assessing stability of homogeneous simple soil slopes is proposed. Most existing slope stability charts are based on limit equilibrium method, which is not rigorous in mechanical standpoint. Meanwhile, limit analysis based on the principle of virtual work and the bound theorems of plasticity is suitable for evaluating the stability of geotechnical structures such as slope due to its simplicity in computation and mechanical rigor. Numerical limit analysis taking advantage of finite elements and linear programming can consider various slope conditions and, in addition, find the optimum stability solution with effeciency. In this study, a numerical limit analysis program in terms of effective stress is developed and a mechanically rigorous slope stability chart is proposed by performing stability analyses for various slope conditions. Pore pressure ratio, commonly used in stability charts, is applied to consider the effects of pore pressure for effective stress analysis. As a result of comparison between proposed stability chart and Spencer's stability chart, it was found that Spencer's chart solutions are biased to lower bound which means conservative in design.

A Rotordynamic and Stability Analysis of Process Gas Turbo-Compressor in accordance with API 617 Standard (API 617 규격에 의거한 프로세스 가스 터보압축기의 로터다이나믹 해석 및 안정성 검토)

  • Kim, Byung-Ok;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.47-53
    • /
    • 2009
  • A rotordynamic and detailed stability analysis in accordance with API 617 standard were performed with a turbo-compressor, which is one of key rotating machinery in refinery, petroleum, and power plants. The system is composed of rotor shaft, impeller, sleeve hub, balance drum, and coupling hub. The rotor system is supported by tilting pad bearings, which has 5 pads and pad on loading condition. The rotordynamic analysis specified by API 617 includes the critical speed map, mode shape analysis, Campbell diagram, unbalance response analysis, and stability analysis. In particular, the specifications of stability analysis consist of a Level 1 analysis that approximates the destabilizing effects of the labyrinth seals and aerodynamic excitations, and Level 2 analysis that includes a detailed labyrinth seal aerodynamic analysis. The results of a rotordynamic analysis and stability analysis can evaluate the operating compressor health and can be utilized as a guide of its maintenance, repair and trouble solution.

Vehicle Stability Analysis using a Non-linear Simplified Model (비선형 단순 모델을 이용한 차량 안정성 해석)

  • Ko, Young-Eun;Song, Chul-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.29-37
    • /
    • 2008
  • Vehicle stability is a very important subject in vehicle design and control, because vehicle safety is closely dependent upon its dynamic stability. For the vehicle stability analysis, the nonlinear vehicle model of a mid-size car with three DOF - longitudinal, lateral and yaw - is employed. A rigorous method is used to determine the vehicle stability region in plane motion. An algorithm is used to materialize a topology theorem, which enables to find the exact stability region. A stability criterion for the critical cornering is proposed.