• Title/Summary/Keyword: Stability

Search Result 34,425, Processing Time 0.063 seconds

Protective Effect of Cryoprotectants on the Viability of Freeze-Dried Lactobacillus fermentum SK152 (동결건조한 Lactobacillus fermentum SK152 균주의 생존율에 미치는 동결보호제의 효과)

  • Kim, Sang Hoon;Gye, Haeun;Oh, Ju Kyoung;Hwang, In-Chan;Kang, Dae-Kyung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.206-212
    • /
    • 2019
  • This study was conducted to investigate the effect of cryoprotectants on the storage stability of Lactobacillus fermentum SK152, which was isolated as a probiotic candidate. Solutions of 10% glucose, trehalose, dextrin, and skim milk powder were used as cryoprotectants. The survival rates of L. fermentum SK152 after freeze-drying were 5.6% (dextrin), 2.2% (skim milk powder), 1.7% (glucose), and 1.5% (trehalose), suggesting that dextrin was most effective at minimizing the cell death of L. fermentum SK152 by lyophilization. The survival rates of L. fermentum SK152 stored at 4℃ ranged from 37% (dextrin)-90% (skim milk powder) after 8 weeks, while those at 20℃ ranged from 4% (dextrin)-12% (skim milk powder) after 7 weeks, indicating that skim milk powder was the best at minimizing the cell death of L. fermentum SK152 during storage, irrespective of storage temperature, among the cryoprotectants used.

Design, Fabrication and Evaluation of a Conduction Cooled HTS Magnet for SMES (SMES용 전도냉각형 고온초전도 자석의 설계, 제작 및 평가)

  • Bae, Joon-Han;Kim, Hae-Jong;Seong, Ki-Chul
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • This paper describes design, fabrication, and evaluation of the conduction cooled high temperature superconducting (HTS) magnet for superconducting magnetic energy storage (SMES). The HTS magnet is composed of twenty-two of double pancake coils made of 4-ply conductors that stacked two Bi-2223 multi-filamentary tapes with the reinforced brass tape. Each double pancake coil consists of two solenoid coils with an inner diameter of 500 mm, an outer diameter of 691 mm, and a height of 10 mm. The aluminum plates of 3 mm thickness were arranged between double pancake coils for the cooling of the heat due to the power dissipation in the coil. The magnet was cooled down to 5.6 K with two stage Gifford McMahon (GM) cryocoolers. The maximum temperature at the HTS magnet in discharging mode rose as the charging current increased. 1 MJ of magnetic energy was successfully stored in the HTS magnet when the charging current reached 360A without quench. In this paper, thermal and electromagnetic behaviors on the conduction cooled HTS magnet for SMES are presented and these results will be utilized in the optimal design and the stability evaluation for conduction cooled HTS magnets.

Cathode materials advance in solid oxide fuel cells (고체산화물연료전지 공기극의 재료개발동향)

  • Son, Young-Mok;Cho, Mann;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

A Case Study on the Analysis of Cause and Characteristics of a Landslide at the Sedimentary Rock Area (퇴적암 지역에서의 산사태 원인 및 특성 분석에 대한 사례연구)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.101-113
    • /
    • 2007
  • A landslide was occurred due to soil cutting for construction to expand the Donghae express highway in Dong-hae-City, Korea. The total area of the landslide was about $9,550m^2$ with 100 m of width and 87m of height. The landslide was occurred due to the internal factor of the unstable geological structure including the clay layer and the external factor of continuous heavy rainfalls. As the result of field instrumentation during the landslide, the horizontal displacement of the slope ground increases with increasing the accumulated rainfall by continuous rainfall during the rainy season. Also, the depth of sliding failure was decided by the horizontal displacement distribution during landslide occurrence. It makes sure that the horizontal displacement starts from the depth of sliding failure and the depth of sliding failure matches well with the location of the clay layer. As the slope stability analysis using Bishop's Simplified Method at the landslide area, the safety factor of slope during the rainy season was 0.53. This safety factor of slope was enough to trigger the landslide at this area. The depth of sliding failure obtained by analytical method matches well with the depth of the clay layer.

Failure Prediction for Weak Rock Slopes in a Large Open-pit Mine by GPS Measurements and Assessment of Landslide Susceptibility (대규모 노천광 연약암반 사면에서의 GPS 계측과 위험도평가에 의한 파괴예측)

  • SunWoo, Choon;Jung, Yong-Bok;Choi, Yo-Soon;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.243-255
    • /
    • 2010
  • The slope design of an open-pit mine must consider economical efficiency and stability. Thus, the overall slope angle is the principal factor because of limited support or reinforcement options available in such a setting. In this study, slope displacement, as monitored by a GPS system, was analyzed for a coal mine at Pasir, Indonesia. Predictions of failure time by inverse velocity analysis showed good agreement with field observations. Therefore, the failure time of an unstable slope can be roughly estimated prior to failure. A GIS model that combines fuzzy theory and the analytical hierarchy process (AHP) was developed to assess slope instability in open-pit coal mines. This model simultaneously considers seven factors that influence the instability of open-pit slopes (i.e., overall slope gradient, slope height, surface flows, excavation plan, tension cracks, faults, and water body). Application of the proposed method to an open-pit coal mine revealed an enhanced prediction accuracy of failure time and failure site compared with existing methods.

Proposal of a Design Method of slope Reinforced by the Earth Retention System (활동억지시스템으로 보강된 사면의 설계법 제안)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • In this study, the design method of slope reinforced by the earth retention systems were systematically developed, and the flow chart of design procedure fur each system were constructed to design the slope rationally. The proposed design method is composed of 5 steps such as field condition investigation step, slope design step, landslide occurrence prediction step, slope failure scale estimation step and reinforcement countermeasure selection step. The quantitative standard of slope failure scale was established based on the arrangement of various overseas standards which is estimating the slope failure, and the analysis of slope failure scale which is occurred in the country. The slope failure scale is classified into three categories the small scale of slope failure is less than $150m^3$ of slope failure volume, the middle scale of slope failure is from $150m^3$ to $900m^3$ and the large scale of slope failure is more than $900m^3$. The earth retention system could be selected by the proposed slope failure scale based on the slope failure volume. Meanwhile, the design methods of earth retention system such as piles, soil nails and anchors were developed. The optimal countermeasure for slope stability could be proposed using above design methods.

Characterization of Area Installing Combined Geothermal Systems : Hydrogeological Properties of Aquifer (복합지열시스템에 대한 부지특성화: 대수층의 수리지질학적 특성)

  • Mok, Jong-Koo;Park, Yu-Chul;Park, Youngyun;Kim, Seung-Kyum;Oh, Jeong-Seok;Seonwoo, Eun-Mi
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.293-304
    • /
    • 2017
  • This study was performed in order to hydrogeological analysis of aquifer, which is a necessary part for evaluating the efficiency of the combined well and open-closed loops geothermal (CWG) systems. CWG systems have been proposed for the effective utilization of geothermal energy by combining open loop geothermal systems and closed loop geothermal systems. Small aperture CWG systems and large aperture CWG systems were installed at a green house land with water curtain facilities in Chungju City. Aquifer tests include pumping tests and step-drawdown tests were conducted to analyse hydrogeological characteristics of aquifer in the study area. The transmissivity was estimated in the range of $13.49{\sim}58.99cm^2/sec$, and the storativity was estimated in the range of $1.13{\times}10^{-5}{\sim}5.20{\times}10^{-3}$. The geochemical analysis showed $Ca^{2+}$ ion and ${HCO_3}^-$ ion were dominant in groundwater. The Langelier Saturation Index and the Ryznar Stability Index showed low scaling potential of groundwater. In the analysis of vertical water temperature change, the geothermal gradient was estimated as $2.1^{\circ}C/100m$, which indicated the aquifer was enough for geothermal systems. In conclusion, groundwater is rich, can stably use geothermal heat, and it is less likely to cause deterioration of thermal energy efficiency by precipitation of carbonate minerals in study area. Therefore, the study area is suitable for installation of the combined geothermal system.

Engineering Geological Implications of Fault Zone in Deep Drill Cores: Microtextural Characterization of Pseudotachylite and Seismic Activity (시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.489-500
    • /
    • 2017
  • It is not rare that pseudotachylite, dark colored rock with glassy texture, is recognizable in deep core samples drilled up to 900 m from the surface. Pseudotachylite with widths varying few to 20 cm is sharply contacted or interlayered with the host rocks composed of Jurassic granite and Precambrian amphibolite gneiss, showing moderately ductile deformation or slight folding. Pseudotachylite occurring at varying depths in the deep drill core are slightly different in texture and thickness. There is evidence of fault gouge at shallower depths, although brittle deformation is pervasive in most drill cores and pseudotachylite is identified at random depth intervals. Under scanning electron microscope (SEM), it is evident that the surface of pseudotachylite is characterized by a smooth, glassy matrix even at micrometer scale and there is little residual fragments in the glass matrix except microcrystals of quartz with embayed shape. Such textural evidence strongly supports the idea that the pseudotachylite was generated through the friction melting related to strong seismic events. Based on X-ray diffraction (XRD) quantitative analysis, it consists of primary minerals such as quartz, feldspars, biotite, amphibole and secondary minerals including clay minerals, calcite and glassy materials. Such mineralogical features of fractured materials including pseudotachylite indicate that the fractured zone might form at low temperatures possibly below $300^{\circ}C$, which implies that the seismic activity related to the formation of pseudotachylite took place at shallow depths, possibly at most 10 km. Identification and characterization of pseudotachylite provide insight into a better understanding of the paleoseismic activity of deep grounds and fundamental information on the stability of candidate disposal sites for high-level radioactive waste.

Design and Implementation of Digital Electrical Impedance Tomography System (디지털 임피던스 영상 시스템의 설계 및 구현)

  • 오동인;백상민;이재상;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Different biological tissues have different values of electrical resistivity. In EIT (electrical impedance tomography), we try to provide cross-sectional images of a resistivity distribution inside an electrically conducting subject such as the human body mainly for functional imaging. However, it is well known that the image reconstruction problem in EIT is ill-posed and the quality of a reconstructed image highly depends on the measurement error. This requires us to develop a high-performance EIT system. In this paper, we describe the development of a 16-channel digital EIT system including a single constant current source, 16 voltmeters, main controller, and PC. The system was designed and implemented using the FPGA-based digital technology. The current source injects 50KHz sinusoidal current with the THD (total harmonic distortion) of 0.0029% and amplitude stability of 0.022%. The single current source and switching circuit reduce the measurement error associated with imperfect matching of multiple current sources at the expense of a reduced data acquisition time. The digital voltmeter measuring the induced boundary voltage consists of a differential amplifier, ADC, and FPGA (field programmable gate array). The digital phase-sensitive demodulation technique was implemented in the voltmeter to maximize the SNR (signal-to-noise ratio). Experimental results of 16-channel digital voltmeters showed the SNR of 90dB. We used the developed EIT system to reconstruct resistivity images of a saline phantom containing banana objects. Based on the results, we suggest future improvements for a 64-channel muff-frequency EIT system for three-dimensional dynamic imaging of bio-impedance distributions inside the human body.

Regulation of Vacuolar $H^+-ATPase$ c Gene Expression by Oxidative Stress

  • Kwak, Whan-Jong;Kim, Seong-Mook;Kim, Min-Sung;Kang, Jung-Hoon;Kim, Dong-Jin;Kim, Ho-Shik;Kown, Oh-Joo;Kim, In-Kyung;Jeong, Seong-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.275-282
    • /
    • 2005
  • By using differential display, we identified one of the genes encoding the multi-subunit complex protein V-ATPase, c subunit gene (ATP6L), and showed alterations of the gene expression by oxidative stresses. Expression of the ATP6L gene in Neuro-2A cells was increased by the treatment with $H_2O_2$ and incubation in hypoxic chamber, implying that the expression of the ATP6L gene is regulated by oxidative stresses. To examine mechanisms involved in the regulation of the gene expression by oxidative stresses, the transcriptional activity of the rat ATP6L promoter was studied. Transcription initiation site was determined by primer extension analysis and DNA sequencing, and promoter of the rat ATP6L and its deletion clones were constructed in reporter assay vector. Significant changes of the promoter activities in Neuro-2A cells were observed in two regions within the proximal 1 kbp promoter, and one containing a suppressor was in -195 to -220, which contains GC box that is activated by binding of Sp1 protein. The suppression of promoter activity was lost in mutants of the GC box. We confirmed by electrophoretic mobility shift and supershift assays that Sp1 protein specifically binds to the GC box. The promoter activity was not changed by the $H_2O_2$ treatment and incubation in hypoxic chamber, however, $H_2O_2$ increased the stability of ATP6L mRNA. These data suggest that the expression of the ATP6L gene by oxidative stresses is regulated at posttranscriptional level, whereas the GC box is important in basal activities of the promoter.