• Title/Summary/Keyword: StAR protein

Search Result 17, Processing Time 0.396 seconds

Identification of Steroidogenic Acute Regulatory Protein mRNA in the Rat Ovary and Adrenal G land (흰쥐 난소 및 부신에서 Steroidogenic Acute Regulatory Protein mRNA의 발현에 관한 연구)

  • 김명옥
    • Development and Reproduction
    • /
    • v.2 no.1
    • /
    • pp.39-43
    • /
    • 1998
  • The synthesis of steroid hormone starts from cholesterol. Steroidogenic acute regulatory protein(StAR) transfers cholesterol acutely from the outer mitochondrial membranes to the inner in the early step of steroidogenesis. Many kinds of steroid hormones are mainly synthesized in adrenal grand, ovary and testis. The purpose of this study is to determine the distribution of StAR mRNA in the rat ovary and adrenal gland and to confirm the functions of StAR in these organs. In the ovary, StAR mRNAs were strongly expressed in the corpus luteum, where progesterone is synthesized, and these were weakly expressed in the theca layer of follicles, where androgen is synthesized. However, StAR mRNAs were not detected in the estrogen producing granulosa cells of growing follicles. In the corpus luteum, StAR mRNAs were strongly loclized in the zona fasciculata and zona reticularis, where glucocorticoid is mainly synthesized. StAR mRNAs were weakly expressed in the zona gromerulosa, where mineralcorticoid is synthesized. StAR mRNAs were not detected in the adrenal medulla. In our results, StAR mRNAs were expressed differentially in the steroidogenic cells of ovary and adrenal gland according to the types of steroid hormones, and the statges of corpus luteum development. We conclude that StAR is involved in the steroidogenesis at the very early step of steroid synthesis cascade.

  • PDF

Expression of steroidogenic acute regulatory protein mRNA in immature and adult rat testes (미성숙과 성숙한 흰쥐 고환에서의 Steroidogenic acute regulatory protein mRNA의 발현)

  • Koh, Phil-ok;Kwak, Soo-dong
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.229-236
    • /
    • 2000
  • The synthesis of steroid hormone starts from cholesterol. Steroidogenic acute regulatory protein (StAR) acutely transfers cholesterol from the outer mitochondrial membrane to the inner in the early step of steroidogenesis. Many kinds of steroid hormone are mainly synthesized in adrenal grand, ovary, and testis. Among the steroid hormone, testosterone is synthesized in Leydig cells of the testis, the production of testosterone significantly increases in adult testis after puberty onset. Therefore, we think that the expression of StAR mRNA in testis will change according to the testicular development. The aim of this study is to determine the distribution of StAR mRNA in immature and adult rat testes and to confirm the functions of StAR in these testes. Thus, in situ hybridization was used in rat testes of the 2, 4, and 10 weeks of age. StAR mRNA was expressed in Leydig cells. Positive signals of StAR mRNA were weakly detected in Leydig cells of the 2 weeks of age. But, StAR mRNA was strongly expressed in Leydig cells of the 4 and 10 weeks of age, where steroidogenesis actively occur. In our results, the pattern of StAR mRNA expression was similar to the pattern of testosterone production in immature and adult rat testes. In conclusion, we can suggest that StAR acts as an important factor to regulate the synthesis of testosterone in Leydig cells of the rat testis.

  • PDF

Ethanol Suppressed the Expression of Steroidogenie Acute Regulatory Protein mRNA in the Prepubertal Rat Ovary (미성숙 흰쥐난소에서의 에탄올에 의한 Steroidogenic Acute Regulatory Protein 유전자 발현 억제)

  • Kang, Sang-Soo;Cho, Gyeong-Jae;Park, Wan-Sung
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.109-114
    • /
    • 2000
  • The present study was undertaken to examine the effects of ethanol on the ovarian steroidogenic acute regulatory protein(StAR) gene expression during prepubertal and onset of puberty. From day 25, each rat began receiving either a control saline or ethanol. Animals were sacrificed on day 27 and 32, and their ovaries and blood were collected. In the present results, ethanol treatment significantly decreased serum luteinizing hormone contents at both time points. Uterine weights of ethanol-treated group were significantly lighter than control group at early time point while there was no noticeable discrepancy at late time point. Vaginal openings, a marker of onset of puberty, also clearly delayed in ethanol-treated group. Using an in situ hybridization histochemistry, we determined the expression of mRNAs encoding StAR. Ovaries from ethanol-treated rats showed a suppresed expression of StAR mRNA. These results demonstrate that ethanol can disturb the prepubertal ovarian function and onset of puberty, at least in part, through the inhibition of ovarian StAR gene expression.

  • PDF

Cloning, Expression and Hormonal Regulation of Steroidogenic Acute Regulatory Protein Gene in Buffalo Ovary

  • Malhotra, Nupur;Singh, Dheer;Sharma, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.184-193
    • /
    • 2007
  • In mammalian ovary, steroidogenic acute regulatory (StAR) protein mediates the true rate-limiting step of transport of cholesterol from outer to inner mitochondrial membrane. Appropriate expression of StAR gene represents an indispensable component of steroidogenesis and its regulation has been found to be species specific. However, limited information is available regarding StAR gene expression during estrous cycle in buffalo ovary. In the present study, expression, localization and hormonal regulation of StAR mRNA were analyzed by semi-quantitative RT-PCR in buffalo ovary and partial cDNA was cloned. Total RNA was isolated from whole follicles of different sizes, granulosa cells from different size follicles and postovulatory structures like corpus luteum and Corpus albicans. Semi-quantitative RT-PCR analyses showed StAR mRNA expression in the postovulatory structure, corpus luteum. No StAR mRNA was detected in total RNA isolated from whole follicles of different size including the preovulatory follicle (>9 mm in diameter). However, granulosa cells isolated from preovulatory follicles showed the moderate expression of StAR mRNA. To assess the hormonal regulation of StAR mRNA, primary culture of buffalo granulosa cells were treated with FSH (100 ng/ml) alone or along with IGF-I (100 ng/ml) for 12 to 18 h. The abundance of StAR mRNA increased in cells treated with FSH alone or FSH with IGF-I. However, effect of FSH with IGF-I on mRNA expression was found highly significant (p<0.01). In conclusion, differential expression of StAR messages was observed during estrous cycle in buffalo ovary. Also, there was a synergistic action of IGF-I on FSH stimulation of StAR gene.

Steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) are decreased in human apoptotic embryos

  • Lee, Hyo-Jin;Kim, Jin-Hee;Yang, Hyun-Won
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 2011
  • Fragmentation in human pre-implantation embryos has been suggested as the process of apoptosis. We have previously demonstrated a direct relationship between the increased reactive oxygen species (ROS) and apoptosis in human pre-implantation embryos. ROS is known to suppress the function of mitochondria in which steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) are presented. Therefore, the purpose of this study was to examine the expression of StAR and PBR in human pre-implantation embryos and to evaluate whether reduction of these proteins is associated with apoptosis. Apoptosis was detected by annexin V-fluorescein isothiocyanate (FITC) and mitochondrial membrane potential was measured by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide (JC-1). Immunofluorescence staining and Western blotting were applied to examine the expression of StAR and PBR in the embryos. Lipid droplets in the embryos were stained with Oil Red O. The fragmented pre-implantation embryos were stained with annexin V-FITC, but not the normal ones. The mitochondria with active membrane potential were present less in the fragmented embryos compared with the non-fragmented embryos. We also confirmed that both StAR and PBR were expressed in the embryos and their expression levels were lower in the fragmented ones. In addition, the number and size of lipid droplets were increased in the fragmented embryos. The present study provides evidence that reduction of StAR and PBR in human pre-implantation embryos is associated with an increase in the lipid droplets leading to apoptosis.

Downregulation of the Expression of Steroidogenic Acute Regulatory Protein and Aromatase in Steroidogenic KGN Human Granulosa Cells after Exposure to Bisphenol A

  • Ji-Eun Park;Seung Gee Lee;Seung-Jin Lee;Wook-Joon Yu;Jong-Min Kim
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.185-193
    • /
    • 2023
  • Although increasing evidence of cause-and-effect relationship between BPA exposure and female reproductive disorders have been suggested through many studies, the precise biochemical and molecular mechanism(s) by which BPA interferes with steroidogenesis in the ovarian cells still remain unclear. Therefore, the purpose of this study was to discover the steroidogenic biomarker(s) associated with BPA treatment in human granulosa cell line, KGN. In this study, our results obtained via the analysis of steroidogenesis-related protein expression in KGN cells using quantitative polymerase chain reaction (qPCR) and western blot analyses revealed that the expression levels of steroidogenic acute regulatory (StAR) and aromatase decreased considerably and gradually after BPA treatment in a dose-dependent manner under BPA treatment. Further, remarkable decreases in their expression levels at the cellular levels were also confirmed via immunocytochemistry, and subsequent StAR and aromatase mRNA expression levels showed profiles similar to those observed for their proteins, i.e., both StAR and aromatase mRNA expression levels were significantly decreased under BPA treatment at concentrations ≥0.1 μM. We observed that follicle stimulating hormone upregulated StAR and aromatase protein expression levels; however, this effect was suppressed in the presence of BPA. Regarding the steroidogenic effects of BPA on KGN cells, controversies remain regarding the ultimate outcomes. Nevertheless, we believe that the results here presented imply that KGN cells have a good cellular and steroidogenic machinery for evaluating endocrine disruption. Therefore, StAR and aromatase could be stable and sensitive biomarkers in KGN cells for the cellular screening of the potential risk posed by exogenous and environmental chemicals to female reproductive (endocrine) function.

Lipoid Congenital Adrenal Hyperplasia Diagnosed in an Infant with Hyperpigmentation Only by Targeted Exome Sequencing

  • Kim, Jinsup;Yang, Aram;Jang, Ja-Hyun;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2017
  • Lipoid congenital adrenal hyperplasia (LCAH) is the severe form of congenital adrenal hyperplasia and is characterized by adrenal insufficiency with hyperpigmentation and female external genitalia irrespective of genetic sex. The steroidogenic acute regulatory protein (StAR) is required for the transport of cholesterol into the mitochondria for steroidogenesis, and defects in the StAR gene account for the majority of LCAH cases. In this report, we present a two-day-old hyperpigmented infant with phenotypical female genitalia. With consideration of the clinical and laboratory findings, the infant was suspected of having adrenal insufficiency due to LCAH and treated with glucocorticoid, mineralocorticoid, and sodium chloride. Karyotyping revealed 46, XY. Upon pelvis ultrasonography, adrenal hyperplasia with abdominal masses (thought to be the testicles) was reported. Molecular analysis with targeted exome sequencing revealed the homozygote mutation of c.772C>T ($p.Q258^*$) in exon 7 of the StAR gene. The early detection and treatment of adrenal insufficiency in infants with hyperpigmentation can prevent clinically apparent adrenal crises. During follow-up, the patient had a good clinical condition and maintained normal electrolyte and adrenocorticotropic hormone levels with medication.

Disturbance in Testosterone Production in Leydig Cells by Polycyclic Aromatic Hydrocarbons

  • Oh, Seunghoon
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.187-195
    • /
    • 2014
  • Polycyclic aromatic hydrocarbons (PAHs), which are ubiquitous in the air, are present as volatile and particulate pollutants that result from incomplete combustion. Most PAHs have toxic, mutagenic, and/or carcinogenic properties. Among PAHs, benzo[a]pyrene (B[a]P) and dimethylbenz[a]anthracene (DMBA) are suspected endocrine disruptors. The testis is an important target for PAHs, yet effects on steroidogenesis in Leydig cells are yet to be ascertained. Particularly, disruption of testosterone production by these chemicals can result in serious defects in male reproduction. Exposure to B[a]P reduced serum and intratesticular fluid testosterone levels in rats. Of note, the testosterone level reductions were accompanied by decreased steroidogenic acute regulatory protein (StAR) and $3{\beta}$-hydroxysteroid dehydrogenase isomerase ($3{\beta}$-HSD) expression in Leydig cells. B[a]P exposure can decrease epididymal sperm quality, possibly by disturbing the testosterone level. StAR may be a key steroidogenic protein that is targeted by B[a]P or other PAHs.

Effects of Daidzein on Testosterone Synthesis and Secretion in Cultured Mouse Leydig Cells

  • Zhang, Liuping;Cui, Sheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.618-625
    • /
    • 2009
  • The objective of this work was to study the direct effects of daidzein on steroidogenesis in cultured mouse Leydig cells. Adult mouse Leydig cells were purified by Percoll gradient centrifugation, and the cell purity was determined using a $3{\beta}$-hydroxysteroid dehydrogenase ($3{\beta}$-HSD) staining method. The purified Leydig cells were exposed to different concentrations ($10^{-7}$ M to $10^{-4}$ M) of daidzein for 24 h under basal and human chorionic gonadotropin (hCG)-stimulated conditions. The cell viability and testosterone production were determined, and the related mechanisms of daidzein action were also evaluated using the estrogen receptor antagonist ICI 182,780 and measuring the mRNA levels of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and $3{\beta}$-HSD-1 involved in testosterone biosynthesis. The results revealed that daidzein did not influence cell viability. Daidzein increased both basal and hCG-stimulated testosterone production in a dose-dependent manner, and this effect was statistically significant at concentrations of $10^{-5}$ M and $10^{-4}$ M daidzein (p<0.05). ICI 182,780 had no influence on daidzein action. RTPCR results revealed that $10^{-5}$ M and $10^{-4}$ M daidzein did not exert any obvious influence on the mRNA level of P450scc in Leydig cells. However, in the presence of hCG, these concentrations of daidzein significantly increased the StAR and $3{\beta}$-HSD-1 mRNA levels (p<0.05), but in the absence of hCG, only $10^{-5}$ M and $10^{-4}$ M daidzein up-regulated the StAR and $3{\beta}$-HSD-1 mRNA expression (p<0.05), respectively. These results suggest that daidzein has direct effect on Leydig cells. Daidzein-induced increase of testosterone production is probably not mediated by the estrogen receptor but correlates with the increased mRNA levels of StAR and $3{\beta}$-HSD-1.

Is Autophagy a Prerequisite for Steroidogenesis in Leydig Cells?

  • Ji-Eun Park;Yoon-Jae Kim;Jong-Min Kim
    • Development and Reproduction
    • /
    • v.27 no.3
    • /
    • pp.149-157
    • /
    • 2023
  • We investigated the involvement of autophagy with steroidogenesis in testicular Leydig cells. Human chorionic gonadotropin (hCG)-stimulated T production in Leydig cells was not remarkably altered in the presence of an autophagy inhibitor 3-methyladenine (3-MA). Although pretreatment with 3-MA demonstrated a tendency to decrease hCG-induced T production, the differences were significant only at a higher time point of 24 h following hCG. Microtubule associated protein light chain 3 (LC3)-II was detectable in the control cells in all the experiments. The hCG-induced increase in steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleave (P450scc) protein levels were not significantly altered by 3-MA. Leydig cells isolated from immature rat testes 12 h following hCG treatment showed relatively increased levels of LC3-II protein compared to the control group. Furthermore, LC3-II levels shown in these cells reached almost the identical to those from normal adult testes. However, LC3-II protein levels were almost comparable or even slightly lower than the controls at 48 h following hCG. Expression of StAR and P450scc was upregulated at both 12 and 48 h after hCG. We also used MA-10 cells, the mouse Leydig cell line, in this experiment. When dibutyryl cyclic-AMP was treated with MA-10 cells, P4 levels were significantly increased in the cell culture medium. However, P4 levels tended to decrease in the presence of 3-MA, but the difference was not statistically significant. This was consistent with the results of the rat Leydig cell experiments. Together, we believe that although autophagy participates in steroidogenesis and enhances steroidogenic efficacy of Leydig cells, it may not be a decisive cellular process for steroidogenesis, specifically in the mature Leydig cells.