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Disturbance in Testosterone Production in Leydig Cells by Polycyclic 
Aromatic Hydrocarbons 
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ABSTRACT : Polycyclic aromatic hydrocarbons (PAHs), which are ubiquitous in the air, are present as volatile and 
particulate pollutants that result from incomplete combustion. Most PAHs have toxic, mutagenic, and/or carcinogenic 
properties. Among PAHs, benzo[a]pyrene (B[a]P) and dimethylbenz[a]anthracene (DMBA) are suspected endocrine 
disruptors. The testis is an important target for PAHs, yet effects on steroidogenesis in Leydig cells are yet to be ascertained. 
Particularly, disruption of testosterone production by these chemicals can result in serious defects in male reproduction. 
Exposure to B[a]P reduced serum and intratesticular fluid testosterone levels in rats. Of note, the testosterone level reductions 
were accompanied by decreased steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase 
isomerase (3b-HSD) expression in Leydig cells. B[a]P exposure can decrease epididymal sperm quality, possibly by 
disturbing the testosterone level. StAR may be a key steroidogenic protein that is targeted by B[a]P or other PAHs. 
Key words : Polycyclic aromatic hydrocarbons, Endocrine disruptor, Steroidogenesis, Leydig cells 
 
 

Polycyclic aromatic hydrocarbons 

Polycyclic aromatic hydrocarbons (PAHs), which are 

ubiquitous in the air, are present as volatile and particulate 

pollutants that result from incomplete combustion of fossil 

fuels, wood, and other organic matter (IARC, 1985; Menzie 

et al., 1992). PAHs are widely distributed in soils and 

sediments, groundwater, and the atmosphere. PAH molecules 

are composed of carbon and hydrogen atoms arranged in 

two or more fused benzene rings in linear, angular, or 

cluster arrangements (Sims & Overcash, 1983). PAHs are 

highly lipid-soluble, and therefore, they are readily absorbed 

in the gastrointestinal tract of mammals (Cerniglia, 1984). 

PAHs are rapidly distributed in a wide variety of tissues 

with a marked tendency for body fat localization. Many 

PAHs have toxic, mutagenic, and/or carcinogenic properties 

(Goldman et al., 2001). PAHs induce numerous enzymes 

that are involved in activation and PAH detoxification by 

acting on the aryl hydrocarbon receptor (AhR) (Nebert et 

al., 2004). The AhR is a transcription factor that, on 

binding of agonists, translocates from the cytoplasm to the 

nucleus, where it increases xenobiotic metabolizing enzyme 

expression. The U.S. Environmental Protection Agency 

(EPA) has promulgated 16 unsubstituted PAHs as priority 

pollutants (U.S. EPA, 1999). Of these 16 PAHs, 8 PAH 

compounds are considered to be possible carcinogens, namely 

benzo[a]anthracene (B[a]A), chrysene, benzo[b]fluoranthene 

(B[b]F), benzo[k]fluoranthene (B[k]F), benzo[a]pyrene (B[a]P), 
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dibenzo[a,h]anthracene (DB[a,h]A), indeno[1,2,3-cd]-pyrene 

and benzo[g,h,i]perylene (Srogi et al., 2007). An important 

and very extensively studied prototype of this class of 

compounds is B[a]P (Knize et al., 1999). Two of the most 

potent PAH carcinogens include the environmentally 

relevant dibenzo[a,l]pyrene (DB[a,l]P) and 7-12-dimethyl-

benz[a]anthracene (DMBA), both of which are more potent 

than B[a]P (Higginbotham et al., 1993).  

 

Benzo[a]pyrene and 7-12-
dimethylbenz[a]anthracene 

B[a]P is commonly found in tobacco smoke, broiled 

foods, and polluted environments and is widely regarded 

as a surrogate for PAH exposure. B[a]P is metabolically 

activated via a three-step process. First, cytochrome P450 

(CYP) catalyzes the formation of (7R,8S)-epoxy-7,8-di-

hydrobenzo[a]pyrene (B[a]P-7,8-oxide). This is converted 

to (7R,8S)-dihydroxy-7,8-dihydrobenzo[a]pyrene (B[a]P-

7,8-diol), a reaction catalyzed by epoxide hydrolase. B[a]P- 

7,8-diol then is further oxidized, a process catalyzed by 

cytochrome P450 and other enzymes, producing mainly 

(7R, 8S)-dihydroxy-(9S,10R)-epoxy-7,8,9,10-tetrohydrobenzo- 

[a]pyrene (BPDE). Metabolic activation of B[a]P is highly 

selective. Initial conversion of B[a]P at positions 7 and 8 

produces the R,R-dihydrodiol in high enantiomeric excess. 

Subsequent epoxidation at positions 9 and 10 then predo-

minantly generates the diol-epoxide with R,S,S,R-(+)-anti-

BP-7,8-diol-9,10-epoxide [(+)-anti-BPDE] (Yang et al., 

1976). B[a]P-induced DNA damage predominantly results 

from covalent interaction between (R,S,S,R) diol-epoxide 

and 2'-deoxyguanosine (dG) residues through trans opening 

of the epoxide moiety (Cheng et al., 1989). The muta-

genicity of BPDE- N2-dG and its effects on DNA confor-

mation have also been conclusively demonstrated (Kozack 

& Loechler, 1999). 

7,12-Dimethylbenz[a]anthracene (DMBA) is a PAH that 

is a potent carcinogenic chemical with the ability to induce 

cancer in breast, ovary, skin, and other tissues in rodents 

(Cavalieri et al., 1991; Kanter et al., 2006). Humans are 

exposed to DMBA through burning of organic materials, 

as in cigarette smoke and car exhaust fumes, although 

there is little evidence that DMBA actually occurs in 

nature (Lawther & Waller, 1976). CYP1B1 metabolizes 

DMBA to DMBA-3,4-epoxide, which is hydrolyzed to 

DMBA-3,4-diol by microsomal epoxide hydrolase. DMBA-

3,4-diol then undergoes epoxidation by CYP1A1 or CYP1B1 

to form the ultimate cytotoxic and carcinogenic compound, 

DMBA-3,4-diol-1,2-epoxide (Miyata et al., 1999). In the 

nucleus, DMBA-DE covalently binds to DNA and causes 

the formation of a DNA-adduct, which can result in 

carcinogenicity, mutagenicity, and cytotoxicity (Buters et 

al., 2003). 

 

Leydig Cells 

Leydig cells were discovered in 1859 by Franz von Leydig 

and are found in the testicles next to the seminiferous 

tubules. Leydig cells within the interstitial compartments 

produce testosterone, which is important to maintain sper-

matogenesis (Lipsett et al., 1966) and male secondary sex 

characteristics (Walsh et al., 1934). Pituitary gonadotropin 

luteinizing hormone (LH) stimulates testosterone production 

and subsequent downstream effects (Haider, 2004). Leydig 

cells first appear in the testis during day 15 of embryonic 

development in the rat (Siiteri & Wilson, 1974). The fetal 

Leydig cells present at birth are not progenitors of the 

adult Leydig cell population (Kerr & Knell, 1988). Leydig 

cells through pre- and postnatal development differ in their 

morphology as well as function (Hardy et al., 1991). In the 

adult, perhaps the most notable Leydig cell function is 

androgen production. Estrogen plays an inhibitory role in 

this process and therefore may be important in controlling 

the steroidogenic capacity of the adult testis. Leydig cells 

are responsible for testosterone production in the mammalian 

testis. Testosterone production depends upon stimulation 
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of these cells with LH, which is secreted in pulses into the 

peripheral circulation by the pituitary gland in response to 

gonadotropin-releasing hormone (GnRH) from the hypo-

thalamus. Testosterone and its aromatized product, estradiol, 

then feed back to the hypothalamus and pituitary to 

suppress transient LH and subsequent testosterone productions. 

In response to reduced testosterone, GnRH and LH are 

again produced. This negative feedback cycle results in 

pulsatile secretion of LH followed by pulsatile production 

of testosterone (Ellis et al., 1983). Normal Leydig cell 

function and development are important for male sexual 

development, testicular steroidogenesis during puberty and 

adulthood, and hence normal fertility. 

 
Steroidogenesis in Leydig cells 

Testosterone biosynthesis is primarily controlled by pituitary 

gonadotropin LH. LH binds to specific receptors on the 

surface of Leydig cells and stimulates the production of 

cyclic AMP (camp), the intra-cellular second messenger 

for LH. cAMP has two principle activities in Leydig cell 

steroidogenesis control. The first action of cAMP is the 

acute testosterone biosynthesis stimulation via cholesterol 

mobilization and transport into the steroidogenic pathway, 

an action that takes place in less than a minute. The 

cAMP-dependent protein kinase PKA activates cholesterol 

mobilization from intracellular cholesterol pools and extra-

cellular lipoprotein sources or de novo cholesterol synthesis 

from acetate. Regardless of origin, cholesterol transfer into 

the inner-mitochondrial membrane is a cAMP-dependent 

process, requiring the action of steroidogenic acute regulatory 

protein (StAR) (Stocco, 2000). StAR was initially identified 

as a 30/32-kDa phosphoprotein that accumulates in the 

mitochondria of Leydig cells in response to cAMP treatment 

and in a manner that parallels steroid formation (Epstein & 

Orme-Johnson, 1991). The StAR gene was cloned, and the 

30 kDa phosphoprotein was shown to be processed from a 

37 kDa cytosolic precursor protein containing a mitochondrial 

targeting sequence (Stocco, 2001). The second action of 

cAMP in Leydig cells is the chronic stimulation of steroid-

ogenic enzyme gene expression and activity (Payne et al., 

1996). Once cholesterol is transferred into the mitochondria, 

cholesterol side-chain cleavage cytochrome P450 (P450scc), 

which resides on the inner-face of the mitochondrial inner 

matrix membrane, converts it to pregnenolone. Pregnenolone 

diffuses to the smooth endoplasmic reticulum, where it is 

converted to progesterone by 3β-hydroxysteroid dehydrogenase 

isomerase (3β-HSD). 17α-hydroxylase/C17-20 lyase (P450c17) 

in turn converts progesterone to 17α-hydroxy progesterone, 

then androstenedione, 17β-hydroxysteroid dehydrogenase 

(17β-HSD) then converts androstenedione to testosterone. 

 

Endocrine disruptor effects on male 
reproductive health 

Endocrine disruptors (EDs) are exogenous substances 

that interfere with production or function of hormones that 

are responsible for the maintenance of homeostasis and the 

regulation of developmental processes in the body (US 

EPA, 1998). These substances have potential adverse effects 

on developmental, reproductive, immune, and cardiovascular 

systems in both humans and wildlife (Diamanti-Kandarkis 

et al., 2009). EDs are highly heterogeneous and include 

synthetic chemicals used as industrial solvents/lubricants 

and their by-products [e.g. PCBs, dioxins], plastics [bisphenol 

A (BPA)], plasticizers (phthalates), pesticides [dichloro-

diphenyltrichloroethane (DDT), cypermethrin], fungicides 

(vinclozolin) and pharmaceutical agents [diethylstilbestrol 

(DES)]. Natural substances with hormonal activity have 

been found in human and animal food, including phyto-

estrogens and fungal estrogens (Diamanti-Kandarkis et al., 

2009). EDs interfere with hormonal pathways through a 

multitude of mechanisms. They can compete for hormone 

receptor binding and activation, interfere with post-receptor 

signaling pathways, and modulate synthesis, bioactivity, or 
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elimination of natural hormones, receptors, and cofactors. 

EDs were originally thought to function primarily through 

nuclear hormone receptors, including estrogen, androgen, 

progesterone, thyroid, and retinoid receptors (Diamanti-

Kandarkis et al., 2009; Schug et al., 2011). However, 

recent evidence shows that the mechanisms are much 

broader than originally recognized. Thus, endocrine disruptors 

can act through nuclear hormone receptors, membrane 

receptors, non-steroid receptors, orphan receptors, transcript-

tional coactivators, enzymatic pathways involved in steroid 

biosynthesis and/or metabolism, and numerous other mecha-

nisms that converge upon the endocrine and reproductive 

systems (Diamanti-Kandarkis et al., 2009; Zoeller et al., 

2012). AhR is the most studied protein with respect to ED 

interaction. This orphan receptor acts as a transcription 

factor for detoxifying enzymes (Yoshioka et al., 2011). 

Dioxins and some PCBs exert their endocrine-disruptive 

effects by binding AhR and impairing the usual gene 

transcription response (Beischlag et al., 2008). Moreover, 

AhR ligands enhance sex steroid receptor degradation 

(Ohtake et al., 2011). 

Male reproductive health has been a major focus of 

research on endocrine disrupting substances since the early 

1990s. There has also been an increase in the incidence of 

male reproductive disorders, including reduced semen quality 

and infertility, urogenital tract abnormalities, and testicular 

germ cell cancer (Skakkebaek et al., 2001; Sharpe and 

Skakkebeak, 2003). Male reproductive system development 

requires the activation of specific pathways by hormones, 

notably androgens and anti-Müllerian hormone. Although 

testis formation itself is not hormone-dependent, most 

other aspects of masculinization depend on normal testicular 

hormone production. Furthermore, testicular cell develop-

ment is dependent on the local action of hormones. There-

fore, disruption of testicular hormone production and action 

by EDs may lead to incomplete masculinization and malfor-

mations in the male reproductive tract of both humans and 

animals (Sharpe, 2006). 

Endocrine disrupting effects of non-PAHs on 
Leydig cells 

Pesticides, such as vinclozolin or DDT and its derivatives, 

are all antagonists of AR and inhibit androgen-dependent 

tissue growth in vivo (Gray et al., 1999). Vinclozolin is a 

dicarboximide fungicide that has two active metabolites, 

M1 and M2, that both have anti-androgenic properties. 

These metabolites compete for androgen binding to AR 

and inhibit DHT-induced transcriptional activation by 

blocking AR binding to androgen response elements (AREs) 

in DNA (Wong et al., 1995). Oral vinclozolin administration 

delayed pubertal maturation, decreased sex accessory gland 

growth, and increased serum levels of LH and testosterone 

(Monosson et al., 1999). However, in vitro experiments 

revealed that vinclozolin did not affect basal or hCG-

stimulated testosterone production of rat Leydig cells in 

primary culture (Murono and Derk, 2004). p,p´-DDE [1,1-

Dichloro-2,2-bis(p-chlorophenyl) ethylene], a stable metabolite 

of persistent DDT, act as an antagonist of AR both in vivo 

and in vitro (Kelce et al., 1995). When p,p´-DDE was 

administrated to rats during gestation, anogenital distance 

was reduced, and hypospadias, nipple retention, and weight 

reduction of androgen-dependent tissues occurred (Gray et 

al., 1999). In vitro, p,p´-DDE binds to AR and prevents 

DHT-induced transcriptional activation in cells transfected 

with human AR (Kelce et al., 1995).  

Phthalates are mainly used as plasticizers in the manu-

facturing of flexible vinyl plastic, which is used in consumer 

products, infant toys, food packaging, certain cosmetics, 

and medical devices (Thomas & Thomas, 1984). Although 

commonly used phthalates [e.g. diethylhexyl phthalate 

(DEHP) and dibutyl phthalate (DBP)] and their active 

metabolites [e.g. monoethylhexyl phthalate (MEHP) and 

monobutyl phthalate (MBP)] disrupt male reproductive 

development in an anti-androgenic manner, neither of 

these compounds binds AR (Park et al., 2000). Actually, 

phthalate-induced Leydig cells toxicity depends on the 
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dosage and time of exposure during development. Prenatal 

exposure of rats to DEHP or MEHP during gestation 

significantly reduces fetal testosterone levels (Gray et al., 

2000; Chauvigné et al., 2009), and DEHP reduces serum 

levels of both LH and testosterone in male offspring 

(Akingbemi et al., 2001). Paradoxically, chronic exposure 

of pubertal rats to low-dose DEHP significantly increases 

plasma levels of LH, testosterone, and E2 (Akingbemi et 

al., 2004a).  

Bisphenol A (BPA) is an estrogenic compound that is 

widely used to manufacture polycarbonate plastics, which 

serve as containers for foods and beverages and are 

constituents of dental sealants (Akingbemi et al., 2004b). 

Although BPA structure resembles that of the natural 

estrogen E2, the affinity of BPA for binding ERs is at least 

a 10,000-fold lower than E2 (Welshons et al., 2003). BPA 

causes anti-androgenic effects on testicular function by 

interfering with androgen production and function (Akingbemi 

et al., 2004b). In vivo, exposure of prepubertal rats to 

environmentally-relevant BPA levels suppressed serum 

LH and testosterone levels (Akingbemi et al., 2004b). In 

vitro, BPA treatment of Leydig cells decreased testosterone 

biosynthesis as a result of decreased expression of the 

steroidogenic enzymes (Akingbemi et al., 2004b).  

Dioxins are a class of highly toxic contaminants that are 

environmental pollutants and persistent organic pollutants, 

including polychlorinated dibenzodioxins (PCDDs), poly-

chlorinated dibenzofurans (PCDFs), and PCBs (Poland & 

Knutson 1982). Among these, 2,3,7,8-tetrachloro- dibenzo-p-

dioxin (TCDD) is the most toxic contaminant in the 

environment. It is a by-product of industrial processes and 

is recognized as a potent developmental and reproductive 

toxicant (Gray et al., 1995). The most toxic actions of 

TCDD are mediated through the AhR, which is a ligand-

activated transcription factor (Mimura & Fujii-Kuriyama, 

2003). TCDD exerts its endocrine-disrupting effects through 

multitude mechanisms involving alteration of steroidogenesis 

(Mutoh et al., 2006), reduction of steroid hormone and 

LHRs (Fukuzawa et al., 2004), and induction of CYP1 

family enzymes, resulting in inactivation of steroid hormones 

(Badawi et al., 2000). The effect of TCDD depends on the 

dosage during development. Low-dose exposure to TCDD 

to pregnant rats significantly reduced intratesticular testosterone 

levels of fetal males, while high doses decreased pituitary 

LH production of exposed male fetuses (Adamsson et al., 

2009). In adult male rats, exposure to TCDD inhibits testicular 

steroidogenesis by inhibiting cholesterol mobilization to 

P450scc (Moore et al., 1991).  

 

Reduction of testosterone production in 
Leydig cells by PAHs 

In contrast to non-PAHs, relatively few studies have 

investigated the effects of PAHs on Leydig cell steroidogenesis. 

One study showed that inhalation exposure to B[a]P in F-

344 rats elevated serum LH levels (Archibong et al., 2008). 

Recently, however, a potent endocrine disrupting mechanism 

of testosterone production was proposed in Leydig cells 

after exposure to B[a]P (Chung et al., 2011). Long-term 

exposure to B[a]P significantly reduced both serum and 

intratesticular testosterone levels. The decrease was insufficient 

to cause testicular atrophy with massive germ cell apoptosis, 

but it was associated with a reduction in sperm quality in 

the epididymis. This study suggested that B[a]P exposure 

can decrease epididymal sperm quality by reducing the 

testosterone level and StAR could be an important steroid-

ogenic protein that is targeted by B[a]P or other PAHs. In 

addition, DMBA, another representative PAH, also has a 

negative effect on testosterone production in Leydig cells 

(Personal communications; manuscript in preparation by 

Kim et al.). Kim et al. suggests that reduced testosterone 

production, caused by DMBA treatment, is associated with 

the direct effect of this chemical on steroidogenic machi-

nery. Further studies are required to elucidate a precise  
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mechanism(s) action of PAHs in steroid-ogenic Leydig cells.  
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