Browse > Article
http://dx.doi.org/10.5713/ajas.2009.80695

Effects of Daidzein on Testosterone Synthesis and Secretion in Cultured Mouse Leydig Cells  

Zhang, Liuping (Medical School of Jiangsu University)
Cui, Sheng (State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.22, no.5, 2009 , pp. 618-625 More about this Journal
Abstract
The objective of this work was to study the direct effects of daidzein on steroidogenesis in cultured mouse Leydig cells. Adult mouse Leydig cells were purified by Percoll gradient centrifugation, and the cell purity was determined using a $3{\beta}$-hydroxysteroid dehydrogenase ($3{\beta}$-HSD) staining method. The purified Leydig cells were exposed to different concentrations ($10^{-7}$ M to $10^{-4}$ M) of daidzein for 24 h under basal and human chorionic gonadotropin (hCG)-stimulated conditions. The cell viability and testosterone production were determined, and the related mechanisms of daidzein action were also evaluated using the estrogen receptor antagonist ICI 182,780 and measuring the mRNA levels of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and $3{\beta}$-HSD-1 involved in testosterone biosynthesis. The results revealed that daidzein did not influence cell viability. Daidzein increased both basal and hCG-stimulated testosterone production in a dose-dependent manner, and this effect was statistically significant at concentrations of $10^{-5}$ M and $10^{-4}$ M daidzein (p<0.05). ICI 182,780 had no influence on daidzein action. RTPCR results revealed that $10^{-5}$ M and $10^{-4}$ M daidzein did not exert any obvious influence on the mRNA level of P450scc in Leydig cells. However, in the presence of hCG, these concentrations of daidzein significantly increased the StAR and $3{\beta}$-HSD-1 mRNA levels (p<0.05), but in the absence of hCG, only $10^{-5}$ M and $10^{-4}$ M daidzein up-regulated the StAR and $3{\beta}$-HSD-1 mRNA expression (p<0.05), respectively. These results suggest that daidzein has direct effect on Leydig cells. Daidzein-induced increase of testosterone production is probably not mediated by the estrogen receptor but correlates with the increased mRNA levels of StAR and $3{\beta}$-HSD-1.
Keywords
Daidzein; Testosterone; StAR; P450scc; $3{\beta}$-HSD-1; Mouse Leydig Cells;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Anderson, J. J., M. S. Anthony, J. M. Cline, S. A. Washburn and S. C. Garner. 1999. Health potential of soy isoflavones for menopausal women. Public. Health. Nutr. 2:489-504   PUBMED
2 Anthony, M. S., T. B. Clarkson, C. L. Jr. Hughes, T. M. Morgan and G. L. Burke. 1996. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J. Nutr. 126:43-50
3 Borriello, S. P., K. D. Setchell, M. Axelson and A. M. Lawson. 1985. Production and metabolism of lignans by the human faecal flora. J. Appl. Bacteriol. 58:37-43   DOI   PUBMED
4 Cherradi, N., M. F. Rossier, M. B. Vallotton, R. Timberg, I. Friedberg, J. Orly, X. J. Wang, D. M. Stocco and A. M. Capponi. 1997. Submitochondrial distribution of three key steroidogenic proteins (steroidogenic acute regulatory protein and cytochrome P450scc and 3$\beta$-hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells. J. Biol. Chem. 272:7899-7907   DOI   ScienceOn
5 Choi, J., J. Song, Y. M. Choi, D. J. Jang, E. Kim, I. Kim and K. M. Chee. 2006. Daidzein modulations of apolipoprotein B and fatty acid synthase mRNA expression in chick liver vary depending on dietary protein levels. Asian-Aust. J. Anim. Sci. 19:236-244
6 Hall, J. M., J. F. Couse and K. S. Korach. 2001. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem. 276:36869-36872   DOI   ScienceOn
7 Hilscherova, K., P. D. Jones, T. Gracia, J. L. Newsted, X. Zhang, J. T. Sanderson, R. M. Yu, R. S. Wu and J. P. Giesy. 2004. Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using real-time PCR. Toxicol. Sci. 81:78-89   DOI   ScienceOn
8 Kelce, W. R. 1994. Buthionine sulfoximine protects the viability of adult rat Leydig cells exposed to ethane dimethanesulfonate. Toxicol. Appl. Pharm. 125:237-246   DOI   PUBMED   ScienceOn
9 Perry, D. L., J. M. Spedick, T. P. McCoy, M. R. Adams, A. A. Franke and J. M. Cline. 2007. Dietary soy protein containing isoflavonoids does not adversely affect the reproductive tract of male cynomolgus macaques (Macaca fascicularis). J. Nutr. 137:1390-1394
10 Setchell, K. D. R. and H. Adlercreutz. 1988. Mammalian lignans and phytoestrogens: recent studies on their formation, metabolism and biological role in health and disease. In: Role of the gut flora in toxicity and cancer (Ed. I. R. Rowland). Academic Press, London. pp. 315-345
11 Stocco, D. M. 1998. Recent advances in the role of StAR. Rev. Reprod. 3:82-85   DOI   PUBMED   ScienceOn
12 Toda, T., T. Uesugi, K. Hirai, H. Nukaya, K. Tsuji and H. Ishida. 1999. New 6-O-acyl isoflavone glycosides from soybeans fermented with Bacillus subtilis (natto). I. 6-O-succinylated isoflavone glycosides and their preventive effects on bone loss in ovariectomized rats fed a calcium-deficient diet. Biol. Pharm. Bull. 22:1193–1201   DOI   PUBMED   ScienceOn
13 Wehling, M. 1997. Specific, nongenomic actions of steroid hormones. Annu. Rev. Physiol. 59:365-393   DOI   PUBMED   ScienceOn
14 Wisniewski, A. B., S. L. Klein, Y. Lakshmanan and J. P. Gearhart. 2003. Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats. J. Urology. 169:1582-1586   DOI   ScienceOn
15 Wang, G., X. Zhang, Z. Han, Z. Liu and W. Liu. 2002. Effects of daidzein on body weight gain, serum IGF-I level and cellular immune function in intact male piglets. Asian-Aust. J. Anim. Sci. 15:1066-1070
16 Losel, R. M., E. Falkenstein, M. Feuring, A. Schultz, H. C. Tillmann, K. Rossol-Haseroth and M. Wehling. 2003. Nongenomic steroid action: controversies, questions, and answers. Physiol. Rev. 83:965-1016   PUBMED
17 Jiang, S. Q., Z. Y. Jiang, Y. C. Lin, P. B. Xi and X. Y. Ma. 2007. Effects of soy isoflavone on performance, meat quality and antioxidative property of male broilers fed oxidized fish oil. Asian-Aust. J. Anim. Sci. 20:1252-1257
18 Liu, H., C. Zhang, C. Ge and J. Liu. 2007. Effects of daidzein on mRNA expression of gonadotropin receptors and P450 aromatase in ovarian follicles of white silky fowls. Asian-Aust. J. Anim. Sci. 20:1827-1831
19 Mitchell, J. H., E. Cawood, D. Kinniburgh, A. Provan, A. R. Collins and D. S. Irvine. 2001. Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin. Sci. 100:613-618   DOI   ScienceOn
20 Klinefelter, G. R., P. F. Hall and L. L. Ewing. 1987. Effect of luteinizing hormone deprivation in situ on steroidogenesis of rat Leydig cells purified by a multi-step procedure. Biol. Reprod. 36:769-783   DOI   ScienceOn
21 Habito, R. C., J. Montalto, E. Leslie and M. J. Ball. 2000. Effects of replacing meat with soyabean in the diet on sex hormone concentrations in healthy adult males. Br. J. Nutr. 84:557-563   DOI   ScienceOn
22 Pan, L., X. Xia, Y. Feng, C. Jiang, Y. Cui and Y. Huang. 2008. Exposure of juvenile rats to phytoestrogen daidzein impairs erectile function in a dose-related manner at adulthood. J. Androl. 29:55-62   DOI   ScienceOn
23 Tennant, J. R. 1964. Evaluation of the trypan blue technique for determination of cell viability. Transplantation 2:685-694   DOI   PUBMED   ScienceOn
24 Walsh, L. P., D. R. Webster and D. M. Stocco. 2000. Dimethoate inhibits steroidogenesis by disrupting transcription of the steroidogenic acute regulatory (StAR) gene. J. Endocrinol. 167:253-263   DOI   ScienceOn
25 Akingbemi, B. T., R. Ge, C. S. Rosenfeld, L. G. Newton, D. O. Hardy, J. F. Catterall, D. B. Lubahn, K. S. Korach and M. P. Hardy. 2003. Estrogen receptor-alpha gene deficiency enhances androgen biosynthesis in the mouse Leydig cell. Endocrinol. 144:84-93   DOI   ScienceOn
26 Arshami, J. and K. Cheng. 2007. Effect of rc mutation on semen characteristics, spermatogenic tissues and testosterone profile in blind rhode island red cockerels. Asian-Aust. J. Anim. Sci. 20:701-705
27 Sanderson, J. T. 2006. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol. Sci. 94:3-21   DOI   ScienceOn
28 Falkenstein, E., H. C. Tillmann, M. Christ, M. Feuring and M. Wehling. 2000. Multiple actions of steroid hormones-a focus on rapid, nongenomic effects. Pharmacol. Rev. 52:513-556   DOI   PUBMED
29 Akingbemi, B. T., T. D. Braden, B. W. Kemppainen, K. D. Hancock, J. D. Sherrill, S. J. Cook, X. He and J. G. Supko. 2007. Exposure to phytoestrogens in the perinatal period affects androgen secretion by testicular Leydig cells in the adult rat. Endocrinol. 148:4475-4488   DOI   ScienceOn
30 Jin, L., S. Zhang, B. G. Burguera, M. E. Couce, R. Y. Osamura, E. Kulig and R. V. Lloyd. 2000. Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinol. 141:333-339   DOI   ScienceOn
31 Weber, K. S., K. D. R. Setchell, D. M. Stocco and E. D. Lephart. 2001. Dietary soy-phytoestrogens decrease testosterone levels and prostate weight without altering LH, prostate 5α-reductase or testicular steroidogenic acute regulatory peptide levels in adult male Sprague–Dawley rats. J. Endocrinol. 170:591-599   DOI   ScienceOn
32 Messina, M. J., V. Persky, K. D. Setchell and S. Barnes. 1994. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr. Cancer. 21:113-131   DOI   ScienceOn
33 Lund, T. D., D. J. Munson, M. E. Haldy, K. D. Setchell, E. D. Lephart and R. J. Handa. 2004. Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol. Reprod. 70:1188-1195   DOI   ScienceOn
34 Woclawek-Potocka, I., T. J. Acosta, A. Korzekwa, M. M. Bah, M. Shibaya, K. Okuda and D. J. Skarzynski. 2005. Phytoestrogens modulate prostaglandin production in bovine endometrium: cell type specificity and intracellular mechanisms. Exp. Biol. Med. 230:326-333
35 Kwon, S. M., S. I. Kim, D. C. Chun, N. H. Cho, B. C. Chung, B. W. Park and S. J. Hong. 2001. Development of rat prostatitis model by oral administration of isoflavone and its characteristics. Yonsei. Med. J. 42:395-404   PUBMED
36 Zhao, L., Q. Chen and R. D. Brinton. 2002. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp. Biol. Med. 227:509-519   DOI   ScienceOn
37 Pan, L., X. Xia, Y. Feng, C. Jiang and Y. Huang. 2007. Exposure to the phytoestrogen daidzein attenuates apomorphine-induced penile erection concomitant with plasma testosterone level reduction in dose-and time-related manner in adult rats. Urology 70:613-617   DOI   ScienceOn
38 Chemes, H., S. Cigorraga, C. Bergadá, H. Schteingart, R. Rey and E. Pellizzari. 1992. Isolation of human Leydig cell mesenchymal precursors from patients with the androgen insensitivity syndrome: testosterone production and response to human chorionic gonadotropin stimulation in culture. Biol. Reprod. 46:793-801   DOI   ScienceOn
39 Barnes, S. and T. G. Peterson. 1995. Biochemical targets of isoflavone genistein in tumor cell lines. Proc. Soc. Exp. Biol. Med. 208:103-108
40 Stocco, D. M. and B. J. Clark. 1996. Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17:221-244   PUBMED
41 Payne, A. H. and D. B. Hales. 2004. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 25:947-970   DOI   ScienceOn