• 제목/요약/키워드: Squeegee Angle

검색결과 6건 처리시간 0.019초

스퀴징 공정변수에 따른 형광체막 성형 거동에 관한 연구 (The Effect of Squeezing Parameters on the Fabrication Behavior of Phosphor Films)

  • 박정연;이정원;윤길상
    • 소성∙가공
    • /
    • 제24권2호
    • /
    • pp.95-100
    • /
    • 2015
  • It was confirmed that when phosphor slurry is formed in the cavity of an elastic mold, the pressure distribution of the phosphor slurry varies as a function of the major squeegee parameters (squeegee angle, squeegee velocity, and the viscosity of the phosphor slurry). The higher the slurry viscosity, the faster the squeegee velocity, and the smaller the squeegee angle, the higher the filling completeness of the phosphor slurry. The optimum conditions for complete filling of the phosphor slurry were found when the squeegee angle was between 30 to 45 degrees, squeegee velocity at 40 to 70mm/sec, and the viscosity of the phosphor slurry composite was at 6,556 cps (i.e. phosphor content around 50 wt. %).

스텐실 프린팅 공정에서 미세범프의 성형성 향상을 위한 연구 (Improvement of Filling Characteristics of Micro-Bumps in the Stencil Printing Process)

  • 서원상;민병욱;박근;이혜진;김종봉
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.26-32
    • /
    • 2012
  • In the present study, the stencil printing process using solder paste are numerically analyzed. The key design parameters in the stencil printing process are the printing conditions, stencil design, and solder paste properties. Among these parameters, the effects of printing conditions including the squeegee angle and squeegee pressure are investigated through finite element (FE) analysis. However, the FE analysis for the stencil printing process requires tremendous computational loads and time because this process carries micro-filling through thousands of micro-apertures in stencil. To overcome this difficulty in simulation, the present study proposes a two-step approach to sequentially perform the global domain analysis and the local domain analysis. That is, the pressure development under the squeegee are firstly calculated in the full analysis domain through the global analysis. The filling stage of the solder paste into a micro-aperture is then analyzed in the local analysis domain based on the results of the preceding global analysis.

스텐실 개구홀 크기 변화에 따른 솔더프린팅 인쇄효율 평가 (Evaluation of Solder Printing Efficiency with the Variation of Stencil Aperture Size)

  • 권상현;김정한;이창우;유세훈
    • 마이크로전자및패키징학회지
    • /
    • 제18권4호
    • /
    • pp.71-77
    • /
    • 2011
  • 표면실장형 수동소자인 0402, 0603, 1005 칩에 대한 인쇄 주요인자 결정 및 공정 최적화를 실험계획법을 통해 실시하였다. 실험에 사용된 솔더는 Sn-3.0Ag-0.5Cu와 Sn-0.7Cu이며, 공정변수로는 스텐실 두께, 스퀴지 각도, 인쇄 속도, 기판분리 속도, 스텐실과 기판간의 갭이며, 인쇄압력은 2 $kgf/cm^2$로 고정하였다. 분산분석을 통해 인쇄효율에 영향을 미치는 주요인자가 스텐실 두께와 스퀴지 각도임을 확인할 수 있었다. 주요인자인 스텐실 두께와 스퀴지 각도를 변화시켜 인쇄효율의 최적화 영역을 확인하였고, 0402, 0603, 1005 칩 모두 스퀴지 각도가 $45^{\circ}$ 이하일 경우 인쇄효율이 높았다. 스텐실 두께를 변화할 경우 칩 크기에 따라 인쇄효율이 다른 양상을 보였는데, 0402, 0603 칩에서는 스텐실 두께가 얇을수록 높은 인쇄효율을 보였으며, 1005 칩에서는 스텐실 두께가 두꺼울수록 높은 인쇄효율을 나타내었다.

실험계획법을 이용한 진공유리 Pillar의 배치공정 최적화 (The Arrangement Process Optimization of Vacuum Glazing Pillar using the Design of Experiments)

  • 김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제11권1호
    • /
    • pp.73-78
    • /
    • 2012
  • In this study, the optimal process condition was induced about the pillar arrangement process of applying the screen printing method in the manufacture process of vacuum glazing panel. The high precision screen printing is technology which pushes out the paste and spreads it by using the squeegee on the stainless steel plate in which the pattern is formed. The screen printing method is much used in the flat panel display field including the LCD, PDP, FED, organic EL, and etc for forming the high precision micro-pattern. Also a number of studies of screen printing method have been conducted as the method for the cost down through the improvement of productivity. The screen printing method has many parameters. So we used Taguchi method in order to decrease test frequencies and optimize this parameters efficiently. In this study, experiments of pillar arrangement were performed by using Taguchi experimental design. We analyzed experimental results and obtained optimal conditions which are 4 m/s of squeegee speed, $40^{\circ}$ of squeegee angle and distance between metal mask and glass.

결정질 실리콘 태양전지의 전극 종횡비 개선과 전극 간 간격이 효율에 미치는 영향 분석 (The Analysis on the Effect of Improving Aspect Ratio and Electrode Spacing of the Crystalline Silicon Solar Cell)

  • 김민영;박주억;조해성;김대성;변성균;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제27권4호
    • /
    • pp.209-216
    • /
    • 2014
  • The screen printed technique is one of the electrode forming technologies for crystalline silicon solar cell. It has the advantage that can raise the production efficiency due to simple process. The electrode technology is the core process because the electrode feature is given a substantial factor (for solar cell efficiency). In this paper, we tried to change conditions such as squeegee angle $55{\sim}75^{\circ}$, snap off 0.5~1.75 mm, printing pressure 0.6~0.3 MPa and 1.6~2.0 mm finger spacing. As a result, the screen printing process showed an improved performance with an increased height higher finger height. Optimization of fabrication process has achieved 17.48% efficiency at screen mesh of 1.6 mm finger spacing.

결정질 실리콘 태양전지용 스크린 프린팅 전극 공정 개발 (Screen Printing Electrode Formation Process for Crystalline Silicon Solar Cell)

  • 엄태우;이상협;송찬문;박상용;임동건
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.9-14
    • /
    • 2017
  • The screen printing technique is one of process to form electrode for crystalline silicon solar cell and has been studied a lot, because it has many advantages such as low price, high efficiency and mass production due to simple and fast process. The reason why electrode formation is important is for influence of series resistance and amount of incident light in crystalline silicon solar cell. In this study, electrode was formed by screen printing method with various conditions like squeegee angle, printing speed, snap off, printing pressure. After optimizing various conditions, double printing method was applied to obtain low series resistance and high aspect ratio. As a result, we obtained electrode resistance 45.31 ohm, aspect ratio 4.38, shading loss 7.549% mono-crystalline silicon solar cell with optimal double screen printing condition.