• Title/Summary/Keyword: Squareness Measurement

Search Result 18, Processing Time 0.025 seconds

Analysis for the Squareness Measurement using Laser Interferometer (레이저 간섭계를 이용한 직각도 측정에 관한 분석)

  • Lee, Dong-Mok;Lee, Hoon-Hee;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.863-872
    • /
    • 2012
  • The squareness measurement of driving axes of a machine tool is very important to evaluate the performance of the machine. Laser interferometer measurement system is one of the most reliable equipment to measure the squareness. However, squareness measurement using laser system with an optical square result in restriction of straightness optics setup and Abbe's offset. This offset combines with angular errors during the motion of an axis to cause Abbe's error. In addition, the difficulty in optical square setup causes restriction of other optics and limitation of measurable range. In this paper, mathematical approaches are presented to eliminate the Abbe's error and to estimate squareness for full range by using the best fit of straightness data measured without an optical square. Experiments for squareness measurement of 3 axis machine tool were conducted and the proposed techniques were used for squareness evaluation with elimination of Abbe's error and squareness estimation for the full travel range.

A study on the diagonal error compensation and squareness measurement of linear motor (리니어 모터의 직각도 측정과 대각선 오차 보정에 관한 연구)

  • Kim J.H.;Lee C.W.;Song J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.287-288
    • /
    • 2006
  • This paper introduces an approach of method to compensate accuracy error of diagonal direction. The measurement of squareness error is an important parameter in performance test of two axis Linear Motor and this exerts influence on accuracy error of diagonal test. However, previous knowledge management approaches are limited in deviation measurement of optical axis or restrictive elements of diagonal measurements using laser interferometer. But this proposed method calculated diagonal accuracy error which was occurred by squareness error and compensated squareness error using orthogonal correction method of PMAC. From this result, diagonal accuracy error is significantly reduced. This experimental results show that geometric error of squareness error is easily corrected by dynamic coordinate correction.

  • PDF

Squareness Estimation for Coordinate Measuring Machine Using the Laser Interferometer Measurement Based on the Face-Diagonal Method (Face-Diagonal 방법 기반의 레이저 간섭계 측정을 이용한 CMM 의 직각도 추정)

  • Lee, Hoon Hee;Lee, Dong Mok;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.295-301
    • /
    • 2016
  • The out-of-squareness is one of the error sources that affect the positioning accuracy of machine tools and coordinate measuring machines. Laser interferometer is widely used to measure the position and angular errors, and can measure the squareness using an optical square. However, the squareness measurement using the laser interferometer is difficult, as compared to other errors due to complicated optics setup and Abbe's error occurrence. The effect of out-of-squareness mainly appears at the face-diagonal of the movable plane. The diagonal displacements are also affected by the position dependent geometric errors. In this study, the squareness estimation techniques via diagonal displacement measurement using the laser interferometer without an optical square were proposed. For accurate estimation and measurement time reduction, the errors selected from proposed discriminant were measured. Discrepancy between the proposed technique with the laser interferometer (with an optical square) result was $0.6{\mu}rad$.

Measurement of Axis Squireness by using Reversal Method (반전법을 이용한 축 직각도 측정방법)

  • Lee C.W.;Song J.Y.;Ha T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.436-439
    • /
    • 2005
  • In general a square master and a dial gauge are used to measure the axis squareness on the spot. This method is a comparison measurement and its accuracy depends on the square accuracy wholly. Therefore the accuracy of a square master is very important and it is impossible that the accuracy of a square measurement is superior to the accuracy of a square master. In this paper, the new method of square measurement is proposed for measuring square without a square master and easily. This method is an absolute measurement by using a reversal method and can be used to measurement the accuracy of a square master.

  • PDF

Development of Error Compensation System and On the Machine Measurement System for Ultra-Precision Machine (초정밀가공기용 오차보상시스템 및 기상측정장치 개발)

  • 이대희;나혁민;오창진;김호상;민흥기;김민기;임경진;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.599-603
    • /
    • 2003
  • This paper present an error compensation system and On-Machine Measurement(OMM) system for improving the machining accuracy of ultra-precision lathe. The Fast-Tool-Servo(FTS) driven by a piezoelectric actuator is applied for error compensation system. The controller is implemented on the 32bit DSP for feedback control of piezoelectric actuator. The control system is designed to compensates three kinds of machining errors such as the straightness error of X-axis slide, the thermal growth error of the spindle. and the squareness between spindle and X-axis slide. OMM is preposed to measure the finished profile of workpiece on the machine-tool using capacitive sensor with highly accurate ruby tip probe guided by air bearing. The data acquisition system is linked to the CNC controller to get the position of each axis in real-time. Through the experiments, it is founded that the thermal growth of spindle and tile squareness error between spindle and X-axis slide influenced to machining error more than straightness error of X-axis slide in small travel length. These errors were simulated as a sinusoidal signal which has very low frequency and the FTS could compensate the signal less than 30 m. The implemented OMM system has been tested by measuring flat surface of 50 mm diameter and shows measurement error less than 400 mm

  • PDF

Study on Volumetric Accuracy of a CMM using step guage measurement (스텝게이지를 이용한 3차원 측정기의 입체오차 측정에 관한 연구)

  • 박희재;문준희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.312-318
    • /
    • 1993
  • This paper presents an useful technique for error assessment of CMM with simple gauges such as step gauge. A computer module for measurement path generation is implemented,where the appropriate measurement sequences are generated in terms of DMIS file format for CMMs of CNC mode. After the CNC codes are downloaded into CMMs, the measurement operations are performed, and the error analysis are followed. Positional errors, angular errors are successfully measured with high precision along the 3 axis in relatively short time. The squareness error is also assessed with the step gauge measurement data. The developed system has been practically applied, and showed good performance.

  • PDF

Compensation of the Straightness Measurement Error in the Laser Interferometer (레이저 간섭계의 진직도 측정오차 보상)

  • Khim Gyungho;Keem Tae-Ho;Lee Husang;Kim Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.69-76
    • /
    • 2005
  • The laser interferometer system such as HP5529A is one of the most powerful equipment fur measurement of the straightness error in precision stages. The straightness measurement system, HP5529A is composed of a Wollaston prism and a reflector. In this system, the straightness error is defined as relative lateral motion change between the prism and the reflector and computed from optical path difference of two polarized laser beams between these optics. However, rotating motion of the prism or the reflector used as a moving optic causes unwanted straightness error. In this paper, a compensation method is proposed for removing the unwanted straightness error generated by rotating the moving optic and an experiment is carried out for theoretical verification. The result shows that the unwanted straightness error becomes very large when the reflector is used as the moving optic and the distance between the reflector and the prism is far. Therefore, the prism must be generally used as the moving optic instead of the reflector so as to reduce the measurement error. Nevertheless, the measurement error must be compensated because it's not a negligible error if a rotating angle of the prism is large. In case the reflector must be used as the moving optic, which is unavoidable when the squareness error is measured between two axes, this compensation method can be applied and produces a better result.