볼바를 활용한 5 축 공작기계 틸팅축 측정

Tiling Axis Measurement for 5-axis Machine Tool using Ball Bar *이동목¹, 이훈회², #양승한²

*D. M. Lee¹, H. H. Lee², *S. H. Yang(syang@knu.ac.kr)² ¹ 경북대학교 기계연구소, ² 경북대학교 기계공학과

Key words: Tiling axis, Ball bar, Offset error, Squareness, Simultaneous motion

1. 서론

볼바를 활용해 5 축 공작기계 회전축의 오차를 측정하기 위해서는 회전 중심축에 툴볼을 일치시키고 회전축의 단독 구동을 통해 측정된 원호 데이터의 편심으로부터 오프셋과 직각도를 계산하는 방법을 사용한다.¹ 하지만 틸팅 중심축 상에 툴볼의 설치가 불가능한 틸팅 로타리 테이블 타입의 경우 틸팅축의 단독 구동만으로 측정이 불가능하며 직선축을 추가로 동시 구동시키는 방법을 사용해야 한다. Tsutsumi²는 대상이 되는 회전 1 축 및 보정이 완료된 직선 2 축을 사용한 3 축 동시 구동을 통한 추정법을 제시하였는데, 추정 정확도가 동시 구동에 사용된 두 개의 직선축 오차 보정성능에 의존적인 문제점을 가지고 있다.

본 연구는 동시 구동에 사용되는 직선축 갯수를 최소로 하는 2 축 동시구동을 통한 틸팅축 오차를 측정 방법을 제안한다. 틸팅 축(A) 및 직선축(Z)을 사용한 동시 구동 원호 경로를 생성하고, 측정된 볼바 데이터로부터 기하학적 오차를 추정하는 방법을 제시한다.

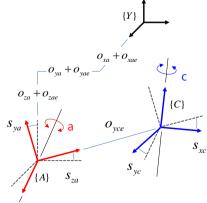


Fig. 1 Geometric errors of tiling rotary table

2. 볼바 측정 경로 생성

본 연구 대상 기계는 "w-CAYFXZ-t" 형태의 틸팅 로타리 테이블을 가진 5 축 공작기계이며 2개의 회전축(A, C)은 Fig. 1과 같이 총 8개의 위치종속적 기하학적 오차를 가진다. 이 중 틸팅축(A)과 관련된 오차는 2 개의 오프셋 오차(o_{vae}, o_{zae})와 2개의 직각도(s_{va}, s_{za})이다.

틸탕축(A)과 직선축(Z)의 동시 구동을 통한 볼바 측정용 원호 경로의 생성은 기계좌표를 기준으로 하고 워크피스볼의 위치를 (x_w, y_w, z_w) , 공구 길이를 L, 볼바의 길이와 원호 경로의 중심각을 각각 R_b 와 ϕ 라 할 경우 식 (1)과 (2)로 구해진다. Fig. 2 는 구해진 원호 경로의시작 지점과 끝 지점에서의 가상 구동 모습을 나타낸다.

$$z = L + o_{za} - z_w - R_b \cos \phi \tag{1}$$

$$a = \cos^{-1} \left(\frac{y_w^2 - (z_w + R_b \cos \phi)^2}{y_w^2 + (z_w + R_b \cos \phi)^2} \right)$$
 (2)

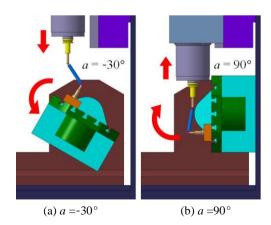


Fig. 2 Simultaneous A & Z axes motion used as the angle increase of tiling table

3. 오차의 추정

원호경로를 따라 볼바 측정을 수행하고 나면 볼바 방정식을 이용해 오차를 추정한다. 틸팅축의 기하학적 오차를 포함하는 체적 오차를 볼바 방정식에 대입하면 식 (3)을 얻게 되는데, 이 식은 볼바 측정값과 구동축 명령값 및 4 개의 기하학적 오차에 대한 선형 최소 자승(Linear least squares) 문제가 된다.

$$R_b \Delta R =$$

$$\begin{bmatrix} -2y_{w} + 2y_{w}\cos a - (L + o_{za} - z +)^{T} \\ z_{w})\sin a \\ -(L + o_{za} - z - z_{w})(-1 + \cos a) \\ -2x_{w}(L + o_{za} - z - z_{w})\sin^{2}(a/2) \\ x_{w}(-2y_{w} + 2y_{w}\cos a - (L + o_{za} - z + z_{w})\sin a) \end{bmatrix} \begin{bmatrix} o_{yae} \\ o_{zae} \\ s_{ya} \\ s_{za} \end{bmatrix}$$
(3)

식 (3)의 계수행렬에서 직각도에 해당하는 3, 4 열은 오프셋 오차에 해당하는 1, 2 열과비교해 워크피스볼의 x 방향 셋업 위치 (x_w) 를 포함하고 있다는 점에 주목할 필요가 있다. 즉, 볼바 초기 셋업 시 $x_w=0$ 과 $x_w\neq 0$ 인 두단계 측정 방법을 이용하면 간단히 각단계에서 오프셋 오차와 직각도에 대해 오차추정이 가능하다.

4. 실험 및 결론

제안한 방법의 타당성을 검증하기 위해 실험을 수행하였다. 2 단계에 걸친 볼바 셋업을 이용해 측정하였으며 추정된 오차 결과는 Table 1 과 같다. 1 단계 측정의 오차 추정 결과는 틸팅축의 오프셋 오차만을 포함하며, 구해진 오프셋 오차의 대입과 2 단계 측정을 통해 최종적인 직각도 추정 결과를 나타낸다.

Table 1 Estimated values from two measurements

Errors	1^{st} measurement $(x_w, y_w, z_w) = (0, -100, 135)$	2^{nd} measurement $(x_w, y_w, z_w) = (200, -100, 135)$
O_{yae}	0.205478 mm	-
O_{zae}	-0.243024 mm	-
S_{ya}		23.07 µrad
S_{za}		6.121 µrad

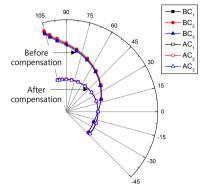


Fig. 4 Measured trajectories before & after compensation in the 1st step

Table 2 PV values before & after compensation

	Before compensation	After compensation	Difference
1 st setup	0.473 mm	0.008 mm	0.464 mm
2 nd setup	0.505 mm	0.011 mm	0.494 mm

오차 추정치에 대한 검증은 각 오차에 대한 보정 작업으로 확인하였다. Fig. 3 은 오프셋 오차로 인한 편심이 보정 후 크게 개선됨을 보이고 있으며 각 오차에 대한 보정전·후 PV 값은 Table 2 와 같이 나타났다.

후기

이 논문은 2012 년도 정부(교육과학기술부)의 재원으로 한국연구재단의 대학중점연구소지원 사업으로 수행된 연구임(212-005856).

참고문헌

- Lee, K. I., Lee, D. M., Yang, S. H., "Parametric modeling and estimation of geometric errors for a rotary axis using double ball-bar," International Journal of Advanced Manufacturing Technology, 62,741-750, 2012.
- Tsutsumi, M., Saito, A., "Identification and Compensation of Systematic Deviations Particular to 5-axis Machining Centers," International Journal of Machine Tools & Manufacture, 43, 8, 771-780, 2003.
- 이동목, 이훈희, 양승한, "2 축 동시구동을 통한 원호경로 생성 방법," 대한기계학회 2012 년도 추계학술대회논문집, 2404-2405.