• Title/Summary/Keyword: Square section

Search Result 545, Processing Time 0.026 seconds

Peak Pressures Acting on Tall Buildings with Various Configurations

  • Bandi, Eswara Kumar;Tanaka, Hideyuki;Kim, Yong Chul;Ohtake, Kazuo;Yoshida, Akihito;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.229-244
    • /
    • 2013
  • Twenty six pressure models of high rise buildings with various cross-sections including twisted models were tested in a boundary layer wind tunnel. The cross-sections were triangular, square, pentagon, hexagon, octagon, dodecagon, circular, and clover. This study investigates variations in peak pressures, and effects of various cross-sections and twist angles on peak pressures. To study the effects of various configurations and twist angles on peak pressures in detail, maximum positive and minimum negative peak pressures at each measurement point of the building for all wind directions are presented and discussed. The results show that peak pressures greatly depend on building cross-section and twist angle.

An experimental study on freezing phenomena of water saturated square cavity with inclined cold surface (경사냉각면에 따른 함수정방형내의 동결현상에 관한 실험적 연구)

  • Lee, C.H.;Kim, J.J.;Kim, B.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.435-445
    • /
    • 1997
  • It was studied the phenomena of transient freezing of an inclined water-saturated enclosure. One side of the test section was cooled and the other sides were insulated. The effects of the initial temperature, the inclination angle on the temperature field and the shape of the ice-water interface were observed. In the beginning of freezing, with increasing the inclination angle the freezing rate was increased and in the stable density layer centered $4^{\circ}C$, the freezing was fast as the convective fluid flow became small. When the initial temperature was above the $4^{\circ}C$, the frozen thickness in the upper part of inclined surface was thinner than that in the lower part, but with time the frozen thickness of upper part was thicker than that of lower part, below the $4^{\circ}C$, the frozen thickness in the upper part was thicker than that of lower part from the begining, and above the $8^{\circ}C$ in the beginning upper part was thinner with concave, but with time thicker the upper part, vanishing concave.

  • PDF

NLMS Adaptive Filter Based Acoustic Echo Canceller (NLMS 적응 필터 기반의 음향 반향 제거기)

  • Hwang, Sung-Sue;Yun, Sang-Suk;Kim, Suk-Chan;Lee, Chae-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.343-349
    • /
    • 2010
  • In this paper, we study real time AEC (acoustic echo canceller) based on NLMS adaptive filter. Proposed method improves conversation quality by enhancing the performance of AEC during double talk section and reduces the power consumption by controling the adaption operation of NLMS adaptive filter. Proposed method examines the convergence of the NLMS adaptive filter, stores the estimated echo path and chooses operation of NLMS adaptive filter. Furthermore if double talk is detected, the proposed AEC utilizes the stored echo path optionally considering missed double talk time. When the proposed AEC is used, the performance of the AEC is enhanced although the simple double talk detector is used and the power consumption of the AEC is reduced.

Fabrication of coated conductor stacked multi-filamentary wire (적층형 초전도 다심 선재 제조)

  • Yun, K.S.;Ha, H.S.;Oh, S.S.;Moon, S.H.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.4-7
    • /
    • 2012
  • Coated conductors have been developed to increase piece length and critical current for electric power applications. Otherwise, Many efforts were carried out to reduce AC loss of coated conductor for AC applications. Twisting and cabling processes are effective to reduce AC loss but, these processes can not be applied for tape shaped coated conductor. It is inevitable to have thin rectangular shape because coated conductor is fabricated by thin film deposition process on metal substrate. In this study, round shape superconducting wire was first fabricated using coated conductors. First of all, Ag coated conductor was used. coated conductor was slitted to several wires with narrow width below 1mm. 12ea slitted wires were parallel stacked on top of another until making up the square cross-section. The bundle of coated conductors was heat treated to stick on each other by diffusion bonding and then copper plated to make round shape wire. Critical current of round wire was measured 185A at 77K, self field.

Analysis of Time-Dependent Deformation of CFRP Considering the Anisotropy of Moisture Diffusion

  • Arao, Yoshihiko;Koyanagi, Jun;Hatta, Hiroshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.359-372
    • /
    • 2008
  • The moisture absorption behavior of carbon fiber-reinforced plastic (CFRP) and its effect on dimensional stability were examined. Moisture diffusivity in CFRP was determined by measuring a specimen's weight during the moisture absorption test. Three types of CFRP specimens were prepared: a unidirectionally reinforced laminate, a quasi-isotropic laminate and woven fabric. Each CFRP was processed into two geometries - a thin plate for determination of diffusivity and a rod with a square cross-section for the discussion of two-dimensional diffusion behavior. By solving Fick's law expanded to 3 dimensions, the diffusivities in the three orthogonal directions were obtained and analyzed in terms of the anisotropy of CFRP moisture diffusion. Coefficients of moisture expansion (CMEs) were also obtained from specimen deformation caused by moisture absorption. During moisture absorption, the specimen surfaces showed larger deformation near the edges due to the distribution of moisture contents. This deformation was reasonably predicted by the finite element analysis using experimentally determined diffusivities and CMEs. For unidirectional CFRP, the effect of the fiber alignment on CME was analyzed by micromechanical finite element analysis (FEA) and discussed.

Aerodynamic measurements of across-wind loads and responses of tapered super high-rise buildings

  • Deng, Ting;Yu, Xianfeng;Xie, Zhuangning
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.331-352
    • /
    • 2015
  • A series of wind tunnel tests were conducted on tapered super high-rise buildings with a square cross section by applying synchronous pressure measurement technology. The effects of global strategy of chamfered modification on aerodynamic loads and wind-induced responses were investigated. Moreover, local aerodynamic strategies of opening a ventilation slot in the corner of equipment and refuge floors were carried out. Results show that the global strategy of tapered elevation increased the vortex shedding frequency, but reduced vortex shedding energy, leading to reduction of across-wind aerodynamic loads and responses. Chamfered modification suppressed the across-wind vortex shedding effect on tapered buildings. Opening the ventilation slot further suppressed the strength of vortex shedding and reduced the residual energy related to vortex shedding in aerodynamic loads of chamfered buildings. Finally, the optimized locations of local aerodynamic strategies were suggested.

Experimental and theoretical studies on SHS column connection with external stiffening ring under static tension load

  • Rong, Bin;You, Guangchao;Zhang, Ruoyu;Ma, Xu;Quan, Xinxin
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.167-177
    • /
    • 2018
  • In order to investigate mechanical properties in the core area of Square Hollow Section(SHS) column connection with external stiffening ring, four specimens were tested under the static tension load. The failure modes, load-displacement curves and strain distribution were analyzed to study the mechanical properties and the load transfer mechanism of the core area of connections. The connections behave good ductility and load-bearing capacity under the static tension load. Parametric analysis was also conducted, in which the thickness of steel tube, extended width and thickness of the stiffening ring were considered as the parameters to investigate the effects on mechanical properties of the connections. Based on the experimental results, an analytical method for the bearing capacity of connection with external stiffening ring under the static tension load was proposed. The theoretical results and the experimental results are in good agreement, which indicates that the theoretical calculation method of the bearing capacity is advisable.

A Study on the Development of Hydroelastic Experimental Techniques of Very Large Box-shaped Floating Structures with Shallow Draft (천흘수 부유식 해양 구조물의 유탄성 모형시험 기법 개발에 관한 연구)

  • H. Shin;I.K. Park;H.S. Shin;S.K. Kim;Y.S. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.64-76
    • /
    • 1999
  • In this paper hydroelastic experimental techniques of very large floating offshore structures are suggested based on the model test carried out in the UOU Ocean Engineering Wide Tank. The prototype is a box-shaped floating structure with length of 300m, breadth of 60m, depth of 2m and draft of 0.5m and longitudinal bending rigidity as $4.87{\times}10^{10}kgm^2$. The scale ratio is 1/42.857. The model is realized by aluminum square pipes with the section dimension of $20mm{\times}20mm$. The numbers of longitudinal and transverse pipes are 7 and 35 respectively. Heave motions at selected points are measured with potentiometers and bending moments with strain gages.

  • PDF

Air-coupled ultrasonic tomography of solids: 2 Application to concrete elements

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.31-43
    • /
    • 2016
  • Applications of ultrasonic tomography to concrete structures have been reported for many years. However, practical and effective application of this tool for nondestructive assessment of internal concrete condition is hampered by time consuming transducer coupling that limits the amount of ultrasonic data that can be collected. This research aims to deploy recent developments in air-coupled ultrasonic measurements of solids, described in Part 1 of this paper set, to concrete in order to image internal inclusions. Ultrasonic signals are collected from concrete samples using a fully air-coupled (contactless) test configuration. These air coupled data are compared to those collected using partial semi-contact and full-contact test configurations. Two samples are considered: a 150 mm diameter cylinder with an internal circular void and a prism with $300mm{\times}300mm$ square cross-section that contains internal damaged regions and embedded reinforcement. The heterogeneous nature of concrete material structure complicates the application and interpretation of ultrasonic measurements and imaging. Volumetric inclusions within the concrete specimens are identified in the constructed velocity tomograms, but wave scattering at internal interfaces of the concrete disrupts the images. This disruption reduces defect detection accuracy as compared with tomograms built up of data collected from homogeneous solid samples (PVC) that are described in Part 1 of this paper set. Semi-contact measurements provide some improvement in accuracy through higher signal-to-noise ratio while still allowing for reasonably rapid data collection.

A Numerical Analysis of Flow and Beat Transfer Characteristics of a Two-Dimensional Multi-Impingement Jet(I) (이차원 다중젯트의 유동 및 열전달 특성의 수치적 해석(I) -돌출열원이 없는 경우의 유동특성-)

  • 장대철;이기명
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-65
    • /
    • 1995
  • A numerical study for a two dimensional multi-jet with crossflow of the spent fluid has been carried out. Three different distributions of mass-flow rate at 5 jet exits were assumed to see their effects upon the flow characteristics, especially in the jet-flow region. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Calculations drew the following items as conclusion. 1) The development of the free jets issued from downstream jets was hindered by the crossflow formed due to jets. Consequently, the free jet was developed into the channel flow without any evident symptom of impingement jet flow characteristics 2) The crossflow induced the pressure gradient along the cross section of jet exits and the value of the pressure gradient increased as going downstream. The crossflow generated also the turbulent kinetic energy as it collied with the downstream jets. 3) The skin friction coefficient along the impingement plate was affected more by the distribution of mass flow rate at jet exits rather than by the Reynolds number. The skin friction coefficient was inversely proportional to the square root of the Reynolds number, regardless of flow regime when a fully developed flow was formed in the jet flow region. 4) The distribution of the skin friction coefficient along the impingement plate was found to be controlled by adjusting the distribution of mass flow rate at jet exits.

  • PDF