• Title/Summary/Keyword: Square Cross Sectional

Search Result 292, Processing Time 0.024 seconds

Entropy Generation Analysis for Various Cross-sectional Ducts in Fully Developed Laminar Convection with Constant Wall Heat Flux

  • Haghgooyan, M.S.;Aghanajafi, C.
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.294-301
    • /
    • 2014
  • This study focuses on analysis and comparison of entropy generation in various cross-sectional ducts along with fully developed laminar flow and constant uniform wall heat flux. The obtained results were compared in ducts with circular, semicircular, and rectangular with semicircular ends, equilateral triangular, and square and symmetrical hexagonal cross-sectional areas. These results were separately studied for aspect ratio of different rectangular shapes. Characteristics of fluid were considered at average temperature between outlet and inlet ducts. Results showed that factors such as Reynolds number, cross section, hydraulic diameter, heat flux and aspect ratio were effective on entropy generation, and these effects are more evident than heat flux and occur more in high heat fluxes. Considering the performed comparisons, it seems that semicircular and circular cross section generates less entropy than other cross sections.

Analysis of the Behavior of Concrete Compressive Member with Various Cross-Sectional Shapes Strengthened by CFS (다양한 단면을 지닌 콘크리트 압축부재의 CFS 보강에 따른 거동해석)

  • 이상호;이민우;김장호;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.605-610
    • /
    • 2002
  • The purpose of this study is to develop an analytic model which can describe the behavior or concrete compressive member strengthened by CFS(Carbon Fiber Sheet) with various cross-sectional shapes such as circular. square, and octagonal and various laminate angles. The failure criterion of laminated CFS is based on Tsai-Wu failure criterion. The stress strain model of confined concrete compressive member is based on an equation proposed by Mander. The effective lateral confining pressure is considered and modified according to various cross-sectional shapes. Octagonal cross-section shows the best results in the aspect of ductility, while circular does in compressive strengthening effects. In addition, [0/0/0/0] laminate in which the direction of fiber is parallel to the direction of principal stress shows the superior strength and ductility than other laminates. The analytic results show that strength and ductility of the analytic model depend on the cross-sectional shapes as well as the laminate angles.

  • PDF

Finite Element Analysis using Curvilinear Square Elements (곡선형 사각요소에 의한 유한요소 해석)

  • 이직렬;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.2
    • /
    • pp.76-81
    • /
    • 1985
  • This paper presents basis functions for curvilinear square elements and describes finite element analysis for coaxial cable and coaxial cross-section waveguide. On the case of coaxial cable, the more exact results is obtained by the propotional elements than by the equal elements with the same number of elements. It is found that the cutoff frequency of coaxial cross-sectional waveguide is more dependent on the inner and outer radius than the cross-sectional angle.

  • PDF

Study on Lubrication Characteristics of Spool Valve with Various Cross-sectional Groove Shapes (다양한 그루브 단면형상에 대한 스풀밸브의 윤활특성 연구)

  • Hong, Sung-Ho;Son, Sang-Ik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.149-159
    • /
    • 2013
  • In this research, the lubrication characteristics of spool valves with various cross-sectional groove shapes were studied. The validity of using the Reynolds equation for the analysis of spool valves with various groove shapes was also investigated. The cross-sectional shapes for the grooves included a triangle, square, and U shape. The characteristics of the flow in the groove were investigated using streamlines. When the number of grooves was increased, the difference between the results obtained from the Reynolds equation and those obtained from the Navier-Stokes equation increased according to the groove shape. Thus, it was found that the Navier-Stokes equation should be used to investigate the lubrication characteristics of the spool valves in those cases. Moreover, in the case where the cross section of the groove was U-shaped, the groove prevented the small eddy current from occurring in the groove. Therefore, the lateral force and friction force of the spool valve with the U-shaped groove were lower than those of the spool valves with other groove shapes.

Prediction of Initial Design Parameter of Rectangular Shaped Mold Spring Using Finite Element Method (유한요소법을 이용한 사각단면 금형스프링의 초기 설계변수 예측)

  • Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.450-455
    • /
    • 2011
  • This paper presents an inverse design methodology for the cross section geometry of mold spring with a rectangular cross section as the starting material for a coiling process. The cross-sections of mold springs are universally rectangular, as the parallel sides minimize the possibility of failure under high service loads. Pre-coiled wires are initially designed to have a trapezoidal cross section, which becomes a rectangle by the coiling process. This study demonstrates a numerical exercise to predict changes in the sectional geometry in spring manufacture and to obtain the initial cross section which becomes the exact rectangle desired from the manufacturing process. Finite element analysis was carried out to calculate the sectional changes for various mold springs. Geometrical parameters were the widths at inner and outer radii, the inner and the outer corner radii, and the height. A partial least square regression analysis was carried out to find the main contributing factors for deciding initial design values. The height and the width mainly affected various initial parameters. The initial width at the inner radius was mostly affected by various specification parameters.

Numerical Study on the Turbulent Flow in the 180^{\circ}$ Bends Decreasing Cross-sectional Aspect Ratio (단면의 폭이 감소하는 180^{\circ}$ 곡덕트 내 난류유동의 수치해석적 연구)

  • 김원갑;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1056-1062
    • /
    • 2002
  • This paper reports the characteristics of the three dimensional turbulent flow in the 180 degree bends with decreasing cross-sectional area by numerical method. Calculated pressure and velocity, Reynolds stress distributions are compared to the experimental data. Turbulence model employed are low Reynolds number k-epsilon model and algebraic stress model. The results show that the main vortex generated from the inlet part of the bend maintained to outlet of the bend because of the contraction of cross-sectional area. The rate of increase of turbulent kinetic energy through the bend are lower than that of mean flow. Secondary flow strength of the flow is lower about 60% than that of square duct flow.

Numerical Study on the Turbulent Flow in the $180^\circ$ Bends increasing Cross-sectional Aspect Ratio (단면의 폭이 증가하는 $180^\circ$ 곡덕트 내 난류유동의 수치해석적 연구)

  • 김원갑;김철수;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.804-810
    • /
    • 2004
  • This paper reports the characteristics of the three dimensional turbulent flow by numerical method in the 180 degree bends with increasing cross-sectional area. Calculated pressure and velocity, Reynolds stress distributions are compared to the experimental data. Turbulence model employed are low Reynolds number $textsc{k}$-$\varepsilon$ model and algebraic stress model(ASM). The results show that the main vortex generated from the inlet part of the bend maintained to outlet of the bend and vortices are continually developed at the inner wall region. The distribution of turbulent kinetic energy along the bend are increase up to 120$^{\circ}$ because of increment of cross-sectional area. Secondary flow strength of the flow is lower about 60% than that of square duct flow.

Fabrication and Characterization of Free-Standing DBR Porous Silicon Film

  • Um, Sungyong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Distributed Bragg reflector porous silicon of different characteristics were formed to determine their optical constants in the visible wavelength range using a periodic square wave current between low and high current densities. The surface and cross-sectional SEM images of distributed Bragg reflector porous silicon were obtained using a cold field emission scanning electron microscope. The surface image of distributed Bragg reflector porous silicon indicates that the distributions of pores are even. The cross-sectional image illustrates that the multilayer of distributed Bragg reflector porous silicon exhibits a depth of few microns and applying of square current density during the etching process results two distinct refractive indices in the contrast. Distributed Bragg reflector porous silicon exhibited a porosity depth profile that related directly to the current-time profile used in etch. Its free-standing film was obtained by applying an electro-polishing current.

Study on the Characteristics of Impulse Wave Discharged from the Tube Exit with Non-Circular Cross-Section (비원형 관출구로부터 방출되는 펄스파의 특성에 관한 연구)

  • Shin, Hyun-Dong;Kweon, Yong-Hun;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.550-555
    • /
    • 2003
  • When a shock wave arrives at an open end of tube, an impulse wave is discharged from the tube exit and complicated flow is formed near tube exit. The flow field is influenced by the cross-sectional geometry of tube exit, such as circular, square, rectangular, trapezoid and etc. In the current study, three-dimensional propagation characteristics of impulse wave discharged from the tube exit with non-circular cross section are numerically investigated using a CFD method. Total variation diminishing (TVD) scheme is used to solve the three-dimensional, unsteady, compressible Euler equations. Computations are performed for the Mach numbers of the incident shock wave $M_{s}$ below 1.5. The results obtained show that the peak pressure of the impulse wave and propagation directivity depends on the cross-sectional geometry of tube exit and the Mach number of incident shock wave.

  • PDF

Axial Velocity Profiles and Secondary Flows of Developing Laminar Flows in a Straight Connected Exit Region of a 180° Square Curved Duct (180° 곡관덕트의 출구영역에 연결된 직관덕트에서 층류유동의 속도분포와 2차유동)

  • Sohn Hyun-Chull;Lee Heang-Nam;Park Gil-Moon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1092-1100
    • /
    • 2005
  • In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180$^{o}$ curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code(STAR CD). For the PIV measurement, smoke particles produced from mosquito coils. The experimental data were obtained at 9 points dividing the test sections by 400 3m. Experimental and numerical results can be summarized as follows. 1) Reynolds number, Re was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and secondary flows. 2) The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number. Especially, fluid dynamic phenomenon called conner impact were observed at dimensionless axial position, x/D$_{h}$=50.