• Title/Summary/Keyword: Sputtering Method

Search Result 1,356, Processing Time 0.032 seconds

Indium Tin Oxide Based Reflector for Vertical UV LEDs (자외선 수직형 LED 제작을 위한 Indium Tin Oxide 기반 반사전극)

  • Jung, Ki-Chang;Lee, Inwoo;Jeong, Tak;Baek, Jong Hyeob;Ha, Jun-Seok
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2013
  • In this paper, we studied a p-type reflector based on indium tin oxide (ITO) for vertical-type ultraviolet light-emitting diodes (UV LEDs). We investigated the reflectance properties with different deposition methods. An ITO layer with a thickness of 50 nm was deposited by two different methods, sputtering and e-beam evaporation. From the measurement of the optical reflection, we obtained 70% reflectance at a wavelength of 382 nm by means of sputtering, while only 30% reflectance resulted when using the e-beam evaporation method. Also, the light output power of a $1mm{\times}1mm$ vertical chip created with the sputtering method recorded a twofold increase over a chip created with e-beam evaporation method. From the measurement of the root mean square (RMS), we obtained a RMS value 1.3 nm for the ITO layer using the sputtering method, while this value was 5.6 nm for the ITO layer when using the e-beam evaporation method. These decreases in the reflectance and light output power when using the e-beam evaporation method are thought to stem from the rough surface morphology of the ITO layer, which leads to diffused reflection and the absorption of light. However, the turn-on voltage and operation voltage of the two samples showed identical results of 2.42 V and 3.5 V, respectively. Given these results, we conclude that the two ITO layers created by different deposition methods showed no differences in the electric properties of the ohmic contact and series resistance.

The Fabrication of ITO Thin-film O3 Gas Sensors Using R.F. Magnetron Sputtering Method and their Characterization (R.F. Magnetron Sputtering법을 이용한 ITO 박막 오존 가스센서의 제조 및 특성)

  • Kwon, Jung-Bum;Jung, Kyoung-Keun;Lee, Dong-Su;Ha, Jo-Woong;Yoo, Kwang-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.840-845
    • /
    • 2002
  • As an ozone gas sensor, the semiconductor gas sensor which is cheap, portable and simple in use and has a high sensitivity and an excellent selectivity, has been known as an alternative. In the present study, ITO ($In_2O_3 95%,\;SnO_2$ 5%) thin films were deposited on the alumina substrate by using R.F. magnetron sputtering method. The substrate temperature was 300$^{\circ}C$ and 500$^{\circ}C$, respectively and then some specimens were annealed at 500$^{\circ}C$ for 4h in air. ITO gas-sensing films formed crystallines before and after annealing. As results of gas sensitivity measurements to an ozone gas, the sensor deposited at 300$^{\circ}C$ and then annealed has the highest sensitivity (sensible below 1 ppm). As the operating temperature increased gradually, the sensitivity decreased but the response time and stability improved.

CVD and Sputtering-reflow Copper Metalization Technique with CMP

  • Hoshino, M.;Furumura, Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.102-107
    • /
    • 1995
  • We review the copper CVD line, via fill properties, and CMP line resistance. With CVD, trenches and vias with high aspect ratio(above 3) can be filled completely. Sputtering-reflow technique, a new method to filling copper into lines, is also reviewed to compare the CVD process.

  • PDF

Process effects on morphology, electrical and optical properties of a-InGaZnO thin films by Magnetic Field Shielded Sputtering

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.217-217
    • /
    • 2016
  • The amorphous InGaZnO (a-IGZO) is widely accepted as a promising channel material for thin-film transistor (TFT) applications owing to their outstanding electrical properties [1, 2]. However, a-IGZO TFTs have still suffered from their bias instability with illumination [1-4]. Up to now, many researchers have studied the sub-gap density of states (DOS) as the root cause of instability. It is well known that defect states can influence on the performances and stabilities of a-IGZO TFTs. The defects states should be closely related with the deposition condition, including sputtering power, and pressure. Nevertheless, it has not been reported how these defects are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOIs) can be generated by electron attachment in oxygen atom near target surface and then accelerated up to few hundreds eV by a self-bias; at this time, the high energy bombardment of NOIs induce defects in oxide thin films. Recently, we have reported that the properties of IGZO thin films are strongly related with effects of NOIs which are generated during the sputtering process [5]. From our previous results, the electrical characteristics and the chemical bonding states of a-IGZO thin films were depended with the bombardment energy of NOIs. And also, we suggest that the deep sub-gap states in a-IGZO as well as thin film properties would be influenced by the bombardment of high energetic NOIs during the sputtering process.In this study, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process to prevent the NOIs bombardment effects and present how much to be improved the properties of a-IGZO thin film by this new deposition method. We deposited a-IGZO thin films by MFSS on SiO2/p-Si and glass substrate at various process conditions, after which we investigated the morphology, optical and electrical properties of the a-IGZO thin films.

  • PDF

Fabrication of IGZO-based Oxide TFTs by Electron-assisted Sputtering Process

  • Yun, Yeong-Jun;Jo, Seong-Hwan;Kim, Chang-Yeol;Nam, Sang-Hun;Lee, Hak-Min;O, Jong-Seok;Kim, Yong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.2-273.2
    • /
    • 2014
  • Sputtering process has been widely used in Si-based semiconductor industry and it is also an ideal method to deposit transparent oxide materials for thin-film transistors (TFTs). The oxide films grown at low temperature by conventional RF sputtering process are typically amorphous state with low density including a large number of defects such as dangling bonds and oxygen vacancies. Those play a crucial role in the electron conduction in transparent electrode, while those are the origin of instability of semiconducting channel in oxide TFTs due to electron trapping. Therefore, post treatments such as high temperature annealing process have been commonly progressed to obtain high reliability and good stability. In this work, the scheme of electron-assisted RF sputtering process for high quality transparent oxide films was suggested. Through the additional electron supply into the plasma during sputtering process, the working pressure could be kept below $5{\times}10-4Torr$. Therefore, both the mean free path and the mobility of sputtered atoms were increased and the well ordered and the highly dense microstructure could be obtained compared to those of conventional sputtering condition. In this work, the physical properties of transparent oxide films such as conducting indium tin oxide and semiconducting indium gallium zinc oxide films grown by electron-assisted sputtering process will be discussed in detail. Those films showed the high conductivity and the high mobility without additional post annealing process. In addition, oxide TFT characteristics based on IGZO channel and ITO electrode will be shown.

  • PDF

Efficient Quantum Dot Light-emitting Diodes with Zn0.85Mg0.15O Thin Film Deposited by RF Sputtering Method (RF Sputtering 방법으로 증착된 Zn0.85Mg0.15O 박막을 적용한 고효율 양자점 전계 발광 소자 연구)

  • Kim, Bomi;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.49-53
    • /
    • 2022
  • In this study, quantum dot light-emitting diodes (QLEDs) of the optimized EL performance with a radio frequency (RF) sputtered Zn0.85Mg0.15O thin film as an electron transport layer (ETL). In typical QLEDs, ZnO nanoparticles (NPs) are widely used materials for ETL layer due to their advantages of high electron mobility, suitable energy level and easy capable of solution processing. However, the instability problem of solution-type ZnO NPs has not yet been resolved. To solve this problem, ZnMgO thin film doped with 15% Mg of ZnO was fabricated by RF sputtering and optimized for the device applied as an ETL. The QLEDs of optimized ZnMgO thin film exhibited a maximum luminance of 15,972 cd/m2 and a current efficiency of 7.9 cd/A. Efficient QLEDs using sputtering ZnMgO thin film show the promising results for the future display technology.

Characteristics of AlN Dielectric Layer for Metal PCB as a Function of Nitrogen Partial Pressure Using RF-Magnetron Sputtering Method (RF-Magnetron Sputtering 방법을 이용해 질소분압비에 따른 금속 PCB용 AlN 절연막의 특성)

  • Kim, Hwa-Min;Park, Jeong-Sik;Kim, Dong-Young;Bae, Kang;Sohn, Sun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.759-762
    • /
    • 2010
  • In this investigation, the effects of $N_2/(Ar+N_2)$ gas partial pressure on the structural, electrical, and thermal properties of AlN dielectric layers prepared on aluminum substrates using RF-magnetron sputtering method were analyzed. Among the films, the AlN dielectric film deposited under $N_2/(Ar+N_2)$ gas partial pressure of 75% exhibit the highest AlN (002) preferred orientation, which was grain size of about 15.32 nm and very dense structure. We suggest the possibilities of it's application as a dielectric layer for metal PCB because the AlN films prepared at optimized gas partial pressure can improving the insulating property, the thermal conductivity, and thermal diffusivity of the films.