• Title/Summary/Keyword: Spring drought

Search Result 114, Processing Time 0.023 seconds

A Root Cause Analysis for Drought in Taeback City, Kangwon-do in 2008 (강원도 태백지역 2008년 가뭄의 원인분석 연구)

  • Kim, Joo-Hwan;Choi, Gye-Woon;Park, Sang-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.351-359
    • /
    • 2010
  • Recently, there have been flood damages due to the climate change and the flash flood continuously in Korea and there are several flood disaster mitigation plans that are normally most of management plan for water related disasters even though drought disasters are as important as flood disasters. In this study, it is underlined that the research on solution of water shortness due to the drought disasters is currently required since the frequency of drought damage is not very many but continuously increasing. There was big drought damage in TaeBaek City of Kangwon province due to the serious lack of water during autumn, 2008 to spring, 2009. This study therefore analyses the characteristics of hydrometeorological conditions by rainfall frequency analysis and the operations of Gwangdong dam that is a source of multi-regional water supply by analysing water demand. As results of study, there was a drought with 20 years returning period which is not really available to fill the reservoir as usual and which could only filled 52% of reservoir. The rainfall during the dry season was less than normal, however, the water demand from the TaeBaek City was higher than normal. As researching several reasons of water shortness including the reasons described above, this study might be useful for drought mitigation plan.

Water Balance Analysis of Pumped-Storage Reservoir during Non-Irrigation Period for Recurrent Irrigation Water Management (순환형 농업용수관리를 위한 농업용 저수지의 비관개기 양수저류 추정)

  • Bang, Na-Kyoung;Nam, Won-Ho;Shin, Ji-Hyeon;Kim, Han-Joong;Kang, Ku;Baek, Seung-Chool;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.1-12
    • /
    • 2020
  • The extreme 2017 spring drought affected a large portion of South Korea in the Southern Gyeonggi-do and Chungcheongnam-do districts. This drought event was one of the climatologically driest spring seasons over the 1961-2016 period of record. It was characterized by exceptionally low reservoir water levels, with the average water level being 36% lower over most of western South Korea. In this study, we consider drought response methods to alleviate the shortage of agricultural water in times of drought. It could be to store water from a stream into a reservoir. There is a cyclical method for reusing water supplied from a reservoir into streams through drainage. We intended to present a decision-making plan for water supply based on the calculation of the quantity of water supply and leakage. We compared the rainfall-runoff equation with the TANK model, which is a long-term run-off model. Estimations of reservoir inflow during non-irrigation seasons applied to the Madun, Daesa, and Pungjeon reservoirs. We applied the run-off flow to the last 30 years of rainfall data to estimate reservoir storage. We calculated the available water in the river during the non-irrigation season. The daily average inflow from 2003 to 2018 was calculated from October to April. Simulation results show that an average of 67,000 tons of water is obtained during the non-irrigation season. The report shows that about 53,000 tons of water are available except during the winter season from December to February. The Madun Reservoir began in early October with a 10 percent storage rate. In the starting ratio, a simulated rate of 4 K, 6 K, and 8 K tons is predicted to be 44%, 50%, and 60%. We can estimate the amount of water needed and the timing of water pump operations during the non-irrigation season that focuses on fresh water reservoirs and improve decision making for efficient water supplies.

Evaluation of the Relationship between Meteorological, Agricultural and In-situ Big Data Droughts (기상학적 가뭄, 농업 가뭄 및 빅데이터 현장가뭄간의 상관성 평가)

  • LEE, Ji-Wan;JANG, Sun-Sook;AHN, So-Ra;PARK, Ki-Wook;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.64-79
    • /
    • 2016
  • The purpose of this study is to find the relationship between precipitation deficit, SPI(standardized precipitation index)-12 month, agricultural reservoir water storage deficit and agricultural drought-related big data, and to evaluate the usefulness of agricultural risk management through big data. For the long term drought (from January 2014 to September 2015), each data was collected and analysed with monthly and Provincial base. The minimum SPI-12 and maximum reservoir water storage deficit compared to normal year were occurred at the same time of July 2014, and August and September 2015. The maximum frequency of big data was occurred at June and July of 2014, and March and June to September of 2015. The maximum big data was occurred 1 month advanced in 2014 and 2 months advanced in 2015 than the maximum reservoir water storage deficit. The occurrence of big data was sensitive to spring drought from March, late Jangma of June, dry Jangma of July and the rainfall deficit of September 2015. The big data was closely related with the meteorological drought and agricultural drought. Because the big data is the in situ feeling drought, it is proved as a useful indicator for agricultural risk management.

The Fall Precipitation Variation during the Development of El Nino over East Asia including Korea (엘니뇨 발달기 한반도 및 동아시아 가을 강수량 변동)

  • Oh, Hyun Taik;Kwon, Won-Tae;Shin, Im Chul;Park, E-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1247-1250
    • /
    • 2004
  • The amount of precipitation during El Nino over Korea increases in Summer and Winter. However, it decreases in Fall, and exhibits not much change in Spring. Especially, the amount of precipitation during September of El Nino year is much less than that of the September of non-El Nino year. The amount of precipitation during El Nino year of October and November shows similar amount of precipitation during non-El Nino year of the same period. The reason for decreasing precipitation in September is related to the weakening of the 2nd rainy season during the development of El Nino over East Asia including Korea. Insufficiency of fall precipitation during El Nino year influences drought in Spring for next year.

  • PDF

Analysis of Groundwater Recharge in Anseong River Basin under Urbanization and Future Climate Change (도시화 및 기후변화에 의한 안성천 유역의 지하수 함양량 변화 분석)

  • Woo, Soyoung;Kim, Wonjin;Chang, Sunwoo;Choi, Sijung;Kim, Chul-Gyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.483-493
    • /
    • 2024
  • This study analyzed changes in groundwater recharge due to urbanization and future climate change using the SWAT hydrological model in the Anseong river basin (1,647 km2) adjacent to the west sea of Korea. The urbanization scenario was constructed based on increasing urban density and expansion, resulting in a decrease in groundwater recharge and recharge rate by 19.9 mm and 1.77 %, respectively. Future climate change scenarios were simulated using two models representing extreme rainfall and drought, with the drought model indicating that maintaining an average recharge rate of 21.6 % would be challenging. Results from the combined scenario of urbanization and extreme drought suggest that groundwater recharge during the spring season in urban areas would be most significantly affected.

Effects of Water Stress on Growth and Yield of Paeonia lactiflora Pallas (수분스트레스가 작약의 생육과 수량에 미치는 영향)

  • Kim, Se-Jong;Park, Jun-Hong;Oh, Dong-Shig;Song, Kwan-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.199-204
    • /
    • 2001
  • The study was carried out to find effects on growth and yield by drought in Paeonia lactiflora Pallas. The water stress treatment was imposed artificially on April 1 to May 30(top part growth high stage), June 1 to July 30(root growth high stage), August 1 to September 29(late growth stage) and control(below 50kPa) in rain shelter. In drought periods of April 1 to May 30, stem length and number of stem were 67.5cm and 10.4 ea/plant. It showed poor growth compared with control, and root length and diameter also decreased to 27.2cm and 24.5mm, respectively. In root yield, drought treatment of June 1 to July 30 showed lower root yield as $1,809kg\;10a^{-1}$, $1,902kg\;10a^{-1}$ for drought period of August 1 to September 29, compared with $2,039kg\;10a^{-1}$ of control, resulting in 11% and 7% reduction, respectively. Optimum irrigation times (50kPa) was 17 days after continuos rain-off in Spring(April 1 to May 30), 9 days in summer(June 1 to July 30). It could be estimated that effective irrigation point was at least 13 days in after August(Aug. 1 to Sep. 29).

  • PDF

Evaluation of the linked operation of Pyeongrim Dam and Suyangje (dam) during period of drought (가뭄 시 평림댐과 수양제 연계 운영 평가)

  • Park, Jinyong;Lee, Seokjun;Kim, Sungi;Choi, Se Kwang;Chun, Gunil;Kim, Minhwan
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.301-310
    • /
    • 2024
  • The spatial and temporal non-uniform distribution of precipitation makes water management difficult. Due to climate change, nonuniform distribution of precipitation is worsening, and droughts and floods are occurring frequently. Additionally, the intensity of droughts and floods is intensifying, making existing water management systems difficult. From June 2022 to June 2023, most of the water storage rates of major dams in the Yeongsan river and Seomjin river basin were below 30%. In the case of Juam dam, which is the most dependent on water use in the basin, the water storage rate fell to 20.3%, the lowest ever. Pyeongnim dam recorded the lowest water storage rate of 27.3% on May 4, 2023. Due to a lack of precipitation starting in the spring of 2022, Pyeongnim dam was placed at a drought concern level on June 19, 2022, and entered the severe drought level on August 21. Pyeongrim dam and Suyangje(dam) have different operating institutions. Nevertheless, the low water level was not reached at Pyeongnim dam through organic linkage operation in a drought situation. Pyeongnim dam was able to stably supply water to 63,000 people in three counties. In order to maximize the use of limited water resources, we must review ways to move water smoothly between basins and water sources, and prepare for water shortages caused by climate change by establishing a consumer-centered water supply system.

Effect of Carbon Dioxide Concentration, Temperature, and Relative Drought on Growth Responses and Yield in Spring Potato (Solanum tuberosum L.) (이산화탄소와 온도 그리고 한발 영향에 따른 감자의 생육과 수량반응)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.149-158
    • /
    • 2018
  • Agriculture is strongly influenced by climate change such as increased temperature and carbon dioxide ($CO_2$). This study describes the effects of climate change elevated $CO_2$, temperature, and relative drought on growth responses and yield in potato (Solanum tuberosum L.). The assessment was conducted for spring seasons in Soil-Plant-Atmosphere Research (SPAR) chamber at National Institute of Crop Science (NICS). Potatoes exhibit a positive response to $CO_2$ enrichment but water stress primarily reduces potato canopy and tuber yield. Elevated $CO_2$ and temperature increased both dry weight and tuber yield. Elevated $CO_2$ and temperature influenced SPAR 2 plants to a larger, and tuber increased yield up to 28% of than in SPAR 1(30-year average temperature at 450 ppm of $CO_2$). Our study findings indicate that tuber yield increase in potato under high $CO_2$ concentration was due to an increase in the size of individual tubers rather than in the number of the tubers per plant. On other hand, SPAR 3(30-year average temperature $+2.8^{\circ}C$ at 700 ppm of $CO_2$ under water stress) was lower than SPAR 2(30-year average temperature $+2.8^{\circ}C$ at 700 ppm of $CO_2$) nearly 56% of tuber yield due to drought. The results confirm potato drought sensitivity in terms of yield response. The experiment also showed that, in the conditions of climate change, climate change scenarios that improve cropping systems with potato.

Physiological and Proteome Responses of Korean F1 maize (Zea mays L.) Hybrids to Water-deficit Stress during Tassel Initiation (옥수수 영양생장기 한발 스트레스에 의한 광합성의 생리적 반응 및 프로테옴 변화 분석)

  • Bae, Hwan Hee;Kwon, Young-Sang;Son, Beom-Young;Kim, Jung-Tae;Go, Young Sam;Kim, Sun-Lim;Baek, Seong-Bum;Shin, Seonghyu;Kim, Sang Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.422-431
    • /
    • 2019
  • Severe droughts in spring have occurred frequently in Korea in recent years, exerting a critical impact on corn yield. Therefore, it is necessary to find physiological and/or molecular indicators of the response to drought stress in maize plants. In this study, we investigated the effects of water-deficit stress on two Korean elite F1 maize hybrids, Ilmichal and Gwangpyeongok, by withholding water for 10 days at tassel initiation. The water deficit drastically reduced the relative leaf water content, leaf number, leaf area, and stem length, leading to dry matter reduction. Moreover, it reduced the SPAD values and stomatal conductance of leaves in drought-stressed plants of both hybrids. Importantly, the number of leaves and SPAD value were non-destructive and easy to investigate in response to water-deficit stress, suggesting that they may be useful indicators for screening drought-tolerant genetic resources. We detected more than 100 spots that were differentially accumulated under drought stress. Of these spots, a total of 21 protein spots (≥1.5-fold) from drought-exposed maize leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Functional annotation using Gene Ontology analysis revealed that most of the identified proteins were involved in carbohydrate metabolism, stress response fatty acid catabolism, photosynthesis, energy metabolism, and transport. The protein expression levels were increased in both Ilmichal and Gwangpyeongok, except for triosephosphate isomerase, fructose-bisphosphate aldolase, and an uncharacterized protein. The lactoylglutathione lyase delta (3,5)-delta (2,4)-dienoyl-CoA isomerase was overexpressed in Gwangpyeongok only. The results obtained from this study suggest that the drought-specific genes may be useful as molecular markers for screening drought-tolerant maize genotypes.

Status of Rice Paddy Field and Weather Anomaly in the Spring of 2015 in DPRK

  • Hong, Suk Young;Park, Hye-Jin;Jang, Keunchang;Na, Sang-Il;Baek, Shin-Chul;Lee, Kyung-Do;Ahn, Joong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.361-371
    • /
    • 2015
  • To understand the impact of 2015 spring drought on crop production of DPRK (Democratic People's Republic of Korea), we analyzed satellite and weather data to produce 2015 spring outlook of rice paddy field and rice growth in relation to weather anomaly. We defined anomaly of 2015 for weather and NDVI in comparison to past 5 year-average data. Weather anomaly layers for rainfall and mean temperature were calculated based on 27 weather station data. Rainfall in late April, early May, and late May in 2015 was much lower than those in average years. NDVI values as an indicator of rice growth in early June of 2015 was much lower than in 2014 and the average years. RapidEye and Radarsat-2 images were used to monitor status of rice paddy irrigation and transplanting. Due to rainfall shortage from late April to May, rice paddy irrigation was not favorable and rice planting was not progressed in large portion of paddy fields until early June near Pyongyang. Satellite images taken in late June showed rice paddy fields which were not irrigated until early June were flooded, assuming that rice was transplanted after rainfall in June. Weather and NDVI anomaly data in regular basis and timely acquired satellite data can be useful for grasping the crop and land status of DPRK, which is in high demand.