• Title/Summary/Keyword: Spring Method

Search Result 1,891, Processing Time 0.029 seconds

Stress Analysis of Helical Spring Using DQM (미분구적법을 이용한 핼리컬 스프링의 응력해석)

  • Ki-Jun Kang
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.208-212
    • /
    • 2001
  • DQM(differential quadrature method) is applied to computation of two dimensional elasticity problems in helical spring. Elastic shear stresses in an axially loaded helical spring having rectangular and square cross sections are calculated. The results are compared with those obtained using the method of successive approximations. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

  • PDF

Dynamic Behavior Analysis of a Helical Coil Spring Using Space Curve Vector (공간곡선 벡터에 의한 원통 코일 스프링의 동적 거동 해석)

  • 김대원;김종수
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1015-1022
    • /
    • 1998
  • This paper addresses the results of an experimental and analytical research of a helical coil spring subjected to dynamic behavior using space curve vector after considering elongation rate. Vibrations in helical coil spring can be divided into 3 modes such as vibrations of coil spring center axis' vertical direction. axis' horizontal direction, direction about center axis. However. these 3 modes are dependent one another and are characterized as coupled. The dependency was proved through both theoretically and experimentally analyzing the results of dynamic characteristics of coil spring center axis' vertical direction vibration by transfer matrix method using the governing equation of static equilibrium. Also this paper shows that pitch angle and active coils in coil spring affect the dynamic spring characteristics of the above 3 modes and are especially sensitive to the mode for vibration of axis' horizontal direction which most affects especially on dynamo stability of helical coil spring.

  • PDF

Finite Element Analysis of a Piercing and Trimming Process Having a Spring-Attached Die in Hot Former Forging (열간포머 단조공정중 스프링부착 금형을 가진 피어싱과 트리밍 동시공정의 유한요소해석)

  • 문호근;정재헌;전만수
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.536-541
    • /
    • 2003
  • In this paper, the rigid-viscoplastic finite element method is employed together with an iteratively force-balancing method to analyze a piercing and trimming process with a spring-attached die in hot former forging. An actual piercing and trimming process with a spring-attached die is investigated in detail and a generalized analysis model is proposed. A multi-stage hot former forging process is simulated under various spring constants. The analyzed results are discussed in order to investigate the effects of spring constants on the metal flow lines and the formed shapes. Then an optimal piercing and trimming process in hot former forging is devised.

Studies on Precision Bending of Motor Spring (모터스프링의 정밀 벤딩 성형에 관한 연구)

  • Park, S.J.;Lee, S.G.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.366-372
    • /
    • 2016
  • Recently, the amount of spring usage is on the increase in the automotive and aircraft parts industries as well as home appliances. Manufacture of spring reflects a need for diversification, mass production and high precision. Therefore it is very important to know the bending method and forming technique according to the shape of spring. In this study, to find the optimal bending method for the motor spring, the FE-simulation was executed using orthogonal array. The design parameters are wire length, length of vibration and feed rate. Then, the optimal combination of design parameters was suggested using ANN technique.

Spin-up, Spring-back Load Analysis of KC-100 Nose Landing Gear using Explicit Finite Element Method (외연적 유한요소법을 이용한 KC-100 전방착륙장치 Spin-up, Spring-back 하중 해석)

  • Park, Ill-Kyung;Kim, Sung-Jun;Ahn, Seok-Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2011
  • The spin-up and the spring-back are most severe load cases in the aircraft landing gear design. These load cases are caused by reciprocal action of complex physical phenomenon such as the friction between a tire and ground, inertia of the rotation of a tire and the flexibility of a landing gear structure. Generally, the empirical formula or the theoretical formula is used to calculate the spin-up and spring-back load in the early stage of the development program of the aircraft landing gear. After the materialization of the design of a landing gear, spin-up and spring-back load are acquired by the free drop test. In this study, the spin-up and the spring-back load of the rubber shock absorber type KC-100 nose landing gear are calculated by the explicit finite element analysis. Through this analysis, more accurate and realistic spin-up and spring back loads could be applied to the early phase of the development of the aircraft landing gear.

Free vibration analysis of a uniform beam carrying multiple spring-mass systems with masses of the springs considered

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.659-676
    • /
    • 2008
  • The reports regarding the free vibration analysis of uniform beams carrying single or multiple spring-mass systems are plenty, however, among which, those with inertia effect of the helical spring(s) considered are limited. In this paper, by taking the mass of the helical spring into consideration, the stiffness and mass matrices of a spring-mass system and an equivalent mass that may be used to replace the effect of a spring-mass system are derived. By means of the last element stiffness and mass matrices, the natural frequencies and mode shapes for a uniform cantilever beam carrying any number of springmass systems (or loaded beam) are determined using the conventional finite element method (FEM). Similarly, by means of the last equivalent mass, the natural frequencies and mode shapes of the same loaded beam are also determined using the presented equivalent mass method (EMM), where the cantilever beam elastically mounted by a number of lumped masses is replaced by the same beam rigidly attached by the same number of equivalent masses. Good agreement between the numerical results of FEM and those of EMM and/or those of the existing literature confirms the reliability of the presented approaches.

Dynamic Behaviors of an Elastically Restrained Beam Carrying a Moving Mass

  • Ryu, Bong-Jo;Lee, Jong-Won;Yim, Kyung-Bin;Yoon, Young-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1382-1389
    • /
    • 2006
  • Dynamic responses of a simply supported beam with a translational spring carrying a moving mass are studied. Governing equations of motion including all the inertia effects of a moving mass are derived by employing the Galerkin's mode summation method, and solved by using the Runge-Kutta integral method. Numerical solutions for dynamic responses of a beam are obtained for various cases by changing parameters of the spring stiffness, the spring position, the mass ratio and the velocity ratio of a moving mass. Some experiments are conducted to verify the numerical results obtained. Experimental results for the dynamic responses of the test beam have a good agreement with numerical ones.

Robust Design of Leaf Spring of a Polygon Mirror Scanner Motor Against Shock (충격에 강인한 폴리곤 미러 스캐너 모터의 판 스프링 설계)

  • Lee, Sang-Wook;Kim, Myung-Gyu;Jung, Kyung-Moon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.515-520
    • /
    • 2008
  • This paper develops a mite element model of a polygon mirror scanner motor supported by the sintered bearing and flexible supporting structures to analyze the shock response by using the finite element method and the mode superposition method. The validity of the proposed model is verified by comparing the simulated natural frequencies and shock response with the experimental ones. It investigates the displacement and the stress of the most vulnerable component, i.e. a leaf spring due to shock, and it proposes a robust design of leaf spring of a polygon mirror scanner motor against shock.

  • PDF

A Study on deformation compensation of press part based on reverse engineering (역공학기반의 프레스 부품 변형 보정에 관한 연구)

  • Kim, Kwang-Hee;Lee, Yun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.28-32
    • /
    • 2013
  • In this study, we suggested new method for compensation on spring back of press part. At first, we compared between error on CAD data and scanning data. The new method can be substituted for manual modeling process in compensation on spring back. The new method is available for automatic modeling based on 3D scanning data. From the study, the results expect that time and cost reduction for process applying new method for compensation on spring back of press part.

A Determination of Design Parameters for Application of Composite Coil Spring in a Passenger Vehicle (승용차 복합재 코일스프링 개발을 위한 설계변수들의 결정)

  • Oh, Sung-Ha;Choi, Bok-Lok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.77-83
    • /
    • 2013
  • This paper presents the feasibility on the application of composite coil spring, which has great interest in the automobile industry. In order to obtain much lighter weight of the composite spring, it will be necessary to optimize the design variables such as fiber angles and diameter of coil, etc. First of all, mechanical properties were measured to consider the effects of FVR and ply angles for carbon fiber composite material. And the shear modulus with respect to ply angles were derived based on twisting angles calculated by torsional beam model. Next we determined the design parameters of composite coil spring, which has equivalent spring rate to the steel coil spring. In order to assess the proposed method, finite element model of the composite spring was developed and analysed to obtain the spring constant. The results showed that static spring rate of the composite spring was in a good agreement with that of steel spring.