• Title/Summary/Keyword: Spring Component

Search Result 265, Processing Time 0.028 seconds

Mechanical behavior investigation of steel connections using a modified component method

  • Chen, Shizhe;Pan, Jianrong;Yuan, Hui;Xie, Zhuangning;Wang, Zhan;Dong, Xian
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.117-126
    • /
    • 2017
  • The component method is an analytical approach for investigating the moment-rotation relationship of steel connections. In this study, the component method was improved from two aspects: (i) load analysis of mechanical model; and (ii) combination of spring elements. An optimized component method with more reasonable component models, spring arrangement position, and boundary conditions was developed using finite element analysis. An experimental testing program in two major-axis and two minor-axis connections under symmetrically loading was carried out to verify this method. The initial rotational stiffness obtained from the optimized component method was consistent with the experimental results. It can be concluded that (i) The coupling stiffness between column and beam flanges significantly affects the effective height of the tensile-column web. (ii) The mechanical properties of the bending components were obtained using an equivalent t-stub model considering the bending capacity of bolts. (iii) Using the optimized mechanical components, the initial rotational stiffness was accurately calculated using the spring system. (iv) The characteristics of moment-rotation relationship for beam to column connections were effectively expressed by the SPRING element analysis model using ABAQUS. The calculations are simpler, and the results are accurate.

Simulation Study on Dynamic Analysis of Spring Type Needle Valve to Absorb Surge Pressure in Pneumatic Cushion Cylinder (공압 쿠션 실린더의 충격압 흡수를 위한 스프링형 니들밸브의 동특성에 관한 연구)

  • Lee J.G.;Xiaofei Qin;Lee J.;Lee J.C.;Shin H.M.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • The purpose of this study is to find the effective dynamic characteristics of an improved pneumatic cushion cylinder with a spring type needle valve. The dynamic model represented the peak pressure control method when the pneumatic cushion cylinder is moving forward or backward in the horizontal direction. It was found from the simulation results that the peak pressure in the cushion chamber is affected by the spring, which helps to understand the performance of the pneumatic cushion cylinder and to improve or design a better cushion needle valve component. From the simulation results, the stability of pneumatic cushion cylinder with a spring type needle valve was superior and its cushion capability was also better than that without the spring.

  • PDF

Statistical Analysis on the Quality of Surface Water in Jinhae Bay during Winter and Spring (동계와 춘계 진해만 표층수질에 대한 통계분석)

  • Kim, Dong-Seon;Choi, Hyun-Woo;Kim, Kyung-Hee;Jeong, Jin-Hyun;Baek, Seung-Ho;Kim, Yong-Ok
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.291-301
    • /
    • 2011
  • To investigate major factors controlling variations in water quality, principal component analysis and cluster analysis were used to analyze data sets of 12 parameters measured at 23 sampling stations of Jinhae Bay during winter and spring. Principal component analysis extracted three major factors controlling variations of water quality during winter and spring. In winter, major factors included freshwater input, polluted material input, and biological activity. Whereas in spring they were polluted material input, freshwater input, and suspended material input. The most distinct difference in the controlling factors between winter and spring was that the freshwater input was more important than the polluted material input in winter, but the polluted material input was more important than the freshwater input in spring. Cluster analysis grouped 23 sampling stations into four clusters in winter and five clusters in spring respectively. In winter, the four clusters were A (station 5), B (stations 1, 2), C (station 4), and D (the remaining stations). In spring, the five clusters included A (station 5), B (station 1), C (station 3), D (station 6), and E (the remaining stations). Intensive management of the water quality of Masan and Hangam bays could improve the water quality of Jinhae Bay since the polluted materials were mainly introduced into Jinhae Bay through Masan and Hangam bays.

Distributed parameters modeling for the dynamic stiffness of a spring tube in servo valves

  • Lv, Xinbei;Saha, Bijan Krishna;Wu, You;Li, Songjing
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.327-337
    • /
    • 2020
  • The stability and dynamic performance of a flapper-nozzle servo valve depend on several factors, such as the motion of the armature component and the deformation of the spring tube. As the only connection between the armature component and the fixed end, the spring tube plays a decisive role in the dynamic response of the entire system. Aiming at predicting the vibration characteristics of the servo valves to combine them with the control algorithm, an innovative dynamic stiffness based on a distributed parameter model (DPM) is proposed that can reflect the dynamic deformation of the spring tube and a suitable discrete method is applied according to the working condition of the spring tube. With the motion equation derived by DPM, which includes the impact of inertia, damping, and stiffness force, the mathematical model of the spring tube dynamic stiffness is established. Subsequently, a suitable program for this model is confirmed that guarantees the simulation accuracy while controlling the time consumption. Ultimately, the transient response of the spring tube is also evaluated by a finite element method (FEM). The agreement between the simulation results of the two methods shows that dynamic stiffness based on DPM is suitable for predicting the transient response of the spring tube.

Design of Six-Component F/T Sensor with Flexible Fixed Ends (유연한 고정단을 가진 6축 F/T 센서의 설계)

  • Lee, Bong-Hee;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.771-780
    • /
    • 2010
  • This paper describes the design process of a six-component force/torque (F/T) sensor. The new six-component F/T sensor having leaf spring ends has been developed using a cross beam structure as the basic sensing element. Fundamental strain analysis of both ends fixed beam having a leaf spring structure is performed by finite element analysis. In order to obtain similar output sensing strains from the six component loads and minimize coupling strains, the optimal location of strain gages is determined and the strain gages are connected so that the bridge circuits with four strain gages would be balanced. Using leaf spring ends instead of rigid fixed ends, remarkable increment in output sensing strain can be achieved for two component forces. Several modifications in design result in a similar sensing strain of approximately $400\;{\mu}m/m$ for the six-component forces and moments, and a reduced coupling strain of $0\;{\mu}m/m$ between the forces and moments.

Behavior and Reduction of Spring-back in a Thin Cold-Forged Product (두께가 얇은 냉간단조품의 스프링백 거동 및 저감설계)

  • Kim, D.W.;Shin, Y.C.;Choi, H.J.;Yoon, D.J.;Lee, G.A.;Kim, Y.G.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.397-402
    • /
    • 2012
  • The flange hub is a main component in an automotive steering system. In general, the flange hub are fabricated by mechanical machining, which is a process where material waste is inevitable. It is well-known that a net-shape cold forging cannot only reduce material waste but can also improve the mechanical strength of the final product. Thus, a forging process design was conducted for production of a flange hub. Significant spring-back occurs around the flange due to its small thickness in conjunction with the residual stresses after forging. In order to achieve the required dimensional accuracy, a process design with appropriate spring-back control is needed. In this study, a modification of the forging die was designed based on FE analysis with the purpose of spring-back compensation. Four kinds of different die designs were evaluated and the optimum design has two times less spring-back than the initial design. The compensation angle of the optimum design is 0.5 degrees. The results have been experimentally confirmed by cold forging of a flange hub and comparing the amount of spring-back between the actual component and the FE analysis.

Finite Element Analysis of the Axle Spring for Railway Vehicles (철도차량용 액슬 스프링의 유한요소 해석)

  • 우창수;권재도
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.124-131
    • /
    • 1999
  • The axle spring is used in primary suspension component of railway vehicles. The most important factor of axle spring is to have adequate spring constant for comfortable feeling of ride. The non-linear properties of rubber which were important parameter to evaluate of rubber components, were determined by the characteristic test. The finite element analysis of the axle spring are executed to predict the behavior of deformation and stiffness by using commercial FEA code.

  • PDF

Power Generation Characteristics of Uni-morph Piezoelectric Cantilever with Different Vibration Angle (진동 각도에 따른 유니몰프 압전 캔틸레버의 발전특성연구)

  • Kim, Chang Il;Yun, Ji Sun;Park, Woon-Ik;Jeong, Young-Hun;Hong, Youn Woo;Cho, Jeong-Ho;Paik, Jong Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • Energy source of a piezo-electric harvester is vibration. Sources of vibration are machineries operated with high frequencies, constructions and people operated with low frequencies and etc. In this study, we tried to figure out power generation properties over vibrations upon angles of a piezo-cantilever for applying them to movements of the construction and/or people, which are vibration sources at low frequencies. A uni-morph cantilever with a $59mm{\times}29mm{\times}0.2mm$ piezo-electric element attached on a $71mm{\times}46mm{\times}0.25mm$ copperplate was used. A spring was attached to the lower side of the cantilever and a mass was attached on the opposite side. Also, a structure with a specific angle which is an angle in between the ground and the cantilever was prepared and then, connected to a spring or the cantilever. Then, this structure was divided into the A-type and B-type and excited in the direction of z- axis. After that, the angle between the ground and the cantilever was changed and excited by 1 to 10 Hz upon the existence of a spring and/or a mass to compare power generation properties.

Application of F.E.M to the Forming Process of Valve-Spring Retainer (유한요소법을 이용한 Valve-Spring Retainer의 공정해석)

  • 오현석;박성호;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.57-68
    • /
    • 1995
  • A design methodology is applied for manufacturing the valve-spring retainer component. The design criterion is the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic TEM has been applied to simulate the conventional five-stage manufacturing processes, which include mainly backward extrusion and heading process. Simulations of one step process from selected stocks to the final product shape are performed for a possibly better process than the conventional one.

  • PDF

Simplified beam-column joint model for reinforced concrete moment resisting frames

  • Kanak Parate;Onkar Kumbhar;Ratnesh Kumar
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.77-91
    • /
    • 2024
  • During strong seismic events, inelastic shear deformation occurs in beam-column joints. To capture inelastic shear deformation, an analytical model for beam-column joint in reinforced concrete (RC) frame structures has been proposed in this study. The proposed model has been developed using a rotational spring and rigid links. The stiffness properties of the rotational spring element have been assigned in terms of a moment rotation curve developed from the shear stress-strain backbone curve. The inelastic rotation behavior of joint has been categorized in three stages viz. cracking, yielding and ultimate. The joint shear stress and strain values at these stages have been estimated using analytical models and experimental database respectively. The stiffness properties of joint rotational spring have been modified by incorporating a geometry factor based on dimensions of adjoining beam and column members. The hysteretic response of the joint rotational spring has been defined by a pivot hysteresis model. The response of the proposed analytical model has been verified initially at the component level and later at the structural level with the two actually tested RC frame structures. The proposed joint model effectively emulates the inelastic behavior precisely with the experimental results at component as well as at structural levels.