DOI QR코드

DOI QR Code

유연한 고정단을 가진 6축 F/T 센서의 설계

Design of Six-Component F/T Sensor with Flexible Fixed Ends

  • Lee, Bong-Hee (School of Mechanical Engineering, Chungbuk Nat'l Univ.) ;
  • Joo, Jin-Won (School of Mechanical Engineering, Chungbuk Nat'l Univ.)
  • 투고 : 2010.02.12
  • 심사 : 2010.05.04
  • 발행 : 2010.06.01

초록

본 논문에서는 제작이 용이한 십자형 구조를 기본구조로 사용하여 판스프링 고정단을 가진 유연한 6축 로드셀을 설계하였다. 이를 위하여 유한요소법해석을 이용하여 강체 고정단과 판스프링 고정단에 대한 변형 분석을 하였으며 이로부터 특성이 우수한 6축 힘/토크 센서를 설계하였다. 변형률 분포를 이용하여 각 축의 하중에 대한 출력변형률이 비슷한 수준이 되도록 스트레인 게이지 위치를 정하고 상호간섭 변형률이 최소화 되도록 이들로 연결된 브리지회로를 구성하였다. 강체 고정단 대신에 스프링판 고정단을 이용하면 고정 경계부의 조건을 변화시킬 수 있어서 십자형 로드셀의 특성을 획기적으로 개선시킬 수 있었다. 치수 변경을 통하여 설계된 6축 로드셀에 대한 상호 간섭오차는 모든 축에서 0으로 계산되었으며 각 축에서 발생하는 출력변형률 값도 $400\;{\mu}m/m$의 비슷한 수준으로 결정되었다.

This paper describes the design process of a six-component force/torque (F/T) sensor. The new six-component F/T sensor having leaf spring ends has been developed using a cross beam structure as the basic sensing element. Fundamental strain analysis of both ends fixed beam having a leaf spring structure is performed by finite element analysis. In order to obtain similar output sensing strains from the six component loads and minimize coupling strains, the optimal location of strain gages is determined and the strain gages are connected so that the bridge circuits with four strain gages would be balanced. Using leaf spring ends instead of rigid fixed ends, remarkable increment in output sensing strain can be achieved for two component forces. Several modifications in design result in a similar sensing strain of approximately $400\;{\mu}m/m$ for the six-component forces and moments, and a reduced coupling strain of $0\;{\mu}m/m$ between the forces and moments.

키워드

참고문헌

  1. One, K. and Hatamura, Y., 1986, "A New Design for 6-component Force/Torque Sensors," Mechanical Problems in Measuring Force and Mass, pp.39-48.
  2. Yabuki, A., 1990, "Six`Axis Force/Torque Sensor for Assembly Robots," FUJITSU Sci. Tech. J., Vol. 26, No. 1, pp.41-47.
  3. Bayo, E. and Stubbe, J. R., 1989, "Six-Axis Force Sensor Evaluation and a New Type of Optimal Frame Truss Design for Robotic Applications," J. Robotics Systems, Vol. 6, No. 2, pp.191-208. https://doi.org/10.1002/rob.4620060206
  4. Joo, J. W., Na, K. S. and Kim, G. S., 1998, “Design and Evaluation of Small Size Six-axis Force/Torque Sensor Using Parallel Plate Structure,” Transactions of the KSME(A), Vol. 22, No, 2, pp.352-364.
  5. Joo, J. W., Na, K. S. and Kang, D. I., 2002, "Design and Evaluation of a Six-Component Load Cell," Measurement, Vol. 32, pp. 125-133. https://doi.org/10.1016/S0263-2241(02)00002-7
  6. Liu, S. A. and Tzo, H. L., 2002, "A Novel Six-Component Force Sensor of Good Measurement Isotropy and Sensitivities, Sensors and Actuators A, Vol. 100, pp. 223-230. https://doi.org/10.1016/S0924-4247(02)00135-8
  7. Kang C. G., 1998, Analysis on Force Sensing Errors of Force-Torque Sensors, Transactions of the KSME(A), Vol. 22, No, 7, pp.352-364.
  8. Chao, L. P. and Yin, C. Y., 1999, "The Six- Component Force Sensor for Measuring the Loading of the Feet in Locomotion," Materials and Design Vol. 20, pp.237-244. https://doi.org/10.1016/S0261-3069(99)00009-6
  9. Chao, L.P. and Chen, K-T., 1997, "Shape Optimal Design and Force Sensitivity Evaluation of Six-Axis Force Sensors," Sensors and Actuators A, Vol. 63, pp. 105-112. https://doi.org/10.1016/S0924-4247(97)01534-3