• Title/Summary/Keyword: Spray pump

Search Result 82, Processing Time 0.027 seconds

Development of Accelerator Control System for Wet Shotcrete Spraying Equipment (습식 숏크리트 뿜칠 장비의 급결제 유량 제어 시스템 개발)

  • Tae-Ho, Kang;Soo-Ho, Chang;Soon-Wook, Choi;Jin-Tae, Kim;Bong-Gyu, Kim;Chulho, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • The wet shotcrete refers to a method in which all materials are mixed and then supplied to the spraying device, compressed air is added to the nozzle, and the spraying speed is improved to spray on the target surface. In order to reproduce the amount of shotcrete used in the wet method in the field and the situation at the laboratory scale, it is essential to control the discharge amount of the equipment. In this study, in order to increase the reproducibility of field conditions at the laboratory scale, a flow control system for shotcrete mortar spraying equipment was developed and applied to the equipment. To verify the developed equipment, a discharge control test using water and mortar was performed. In the developed control system, the discharge was smoothly controlled according to the user input value for the mono pump, but the discharge was not properly controlled according to the input value for the screw pump because of a reducer. When a speed reducer is attached, it is necessary to adjust the operation rate of the screw pump close to the target flow rate by increasing the operation rate of the screw pump while lowering the operation rate of the mono pump.

Development of Fertilizer-Dissolving Apparatus Using Air Pressure for Nutrient Solution Preparation and Dissolving Characteristics (공기를 이용한 양액 제조용 비료용해 장치 개발 및 용해특성)

  • Kim, Sung Eun;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.163-169
    • /
    • 2012
  • We have conducted three experiments to develop a fertilizer-dissolving apparatus used in fertigation or hydroponics cultivation in order to decrease the fertilizer dissolving time and labor input via automation. All of the experiments were conducted twice. In the first experiment, four selected treatments were tested to dissolve fertilizers rapidly. The first treatment was to dissolve fertilizer by spraying water with a submerged water pump, placed in the nutrient solution tank. The water was sprayed onto fertilizer, which is dissolved and filtered through the hemp cloth mounted on the upper part of the nutrient solution tank (Spray). The second treatment was to install a propeller on the bottom of the nutrient solution tank (Propeller). The third treatment was to produce a water stream with a submerged water pump, located at the bottom of the tank (Submerged). Finally, the fourth treatment was to produce an air stream through air pipes with an air compressor located at the bottom of the tank (Airflow). The Spray treatment was found to take the shortest time to dissolve fertilizer, yet it was inconvenient to implement and manage after installation. The Airflow treatment was thought to be the best method in terms of the time to dissolve, labor input, and automation. In the second experiment, Airflow treatment was investigated in more detail. In order to determine the optimal number of air pipe arms and their specification, different versions of 6- and 8-arm air pipe systems were evaluated. The apparatus with 6 arms (Arm-6) that was made of light density polyethylene was determined to be the best system, evaluated on its time to dissolve fertilizer, easiness to use regardless of the lid size of the tank, and easiness to produce and install. In the third experiment, the Submerged and Arm-6 treatments were compared for their dissolving time and economics. Arm-6 treatment decreased the dissolving time by 8 times and proved to be very economic. In addition, dissolving characteristics were investigated for $KNO_3$, $Ca(NO_3)_2{\cdot}4H_2O$, and Fe-EDTA.

A study on ice-slurry production by water spray (수분무에 의한 아이스 슬러리 생성에 관한 연구)

  • Kim, B.S.;Lee, Y.P.;Yoon, S.Y.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.134-143
    • /
    • 1997
  • A theoretical and experimental study has been performed to investigate the characteristics of ice-slurry product. By diffusion-controlled model, the possibility of ice slurry has been theoretically anticipated. The water vapor evaporated from the surface of droplets is extracted continuously from the chamber by a vacuum pump. The droplet diameter was measured by silion immersed method. The ice slurry has been obtained by spraying droplets of ethylene-glycol aqueous solution in the chamber where pressure is maintained under the triple point of water. The droplet of which the diameter is $300{\mu}m$, and the initial temperature is $20^{\circ}C$, was changed into ice particle within the chamber of which the height is 1.33m.

  • PDF

Development of a Flow Compensating Boom Sprayer for the Speed Variation (주행속도 보상형 붐방제기의 개발)

  • 구영모;정재은
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.211-218
    • /
    • 1998
  • A variable flow-controlled boom sprayer was developed and evaluated. Field tests were conducted to evaluate the adoptability of the sprayerr with optimal conditions. Negative response time was obtained from the field test because pump and PTO were interlocked with the speed of sprayer. Another reason for the negative value was due to the definition of the response time. With constant on-time control, the system was unstable at the conditions of small tolerance and long control interval. The performances of the spray system were stable and accurate. The stable and synchronous responses were achieved with a variable on-time control. The flow control system with an optimal condition (1.0 sec of control interval, 2 of damping ratio, 1% of tolerance) provided the proper performance for uniform spraying. A standard operating procedure of the flow compensating boom sprayer for the ground speed variation was presented and recommended.

  • PDF

Application of CFD Method to Performance Prediction of Fire-Suppression System for Electric Power Utilities (발전설비용 소화시스템의 성능 예측을 위한 CFD기법 적용 연구)

  • Chung, H.T.;Bae, K.Y.;Kim, C.H.;Jeong, I.S.;Bae, J.S.;Han, Y.S.;Kim, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.296-299
    • /
    • 2008
  • In the present research, the exclusive analysis system based on the CFD method were suggested to predict the fire-suppression performance of water mist fire-suppression equipments for design applications. The computing scope is ranged from starting pump to fire-suppression equipments, composed of three parts that calculation of flow rate and pressure distribution at each nozzle, examining of spray performance and predicting of fire-suppression performance in the fire space. Application were done to the fire-suppression system for electric power generation plants. The results were analyzed by comparison between numerical results and initial design conditions in terms of thermal and fluid mechanics.

  • PDF

Ground Speed Control of a Direct Injection Sprayer

  • Koo, T.M.;Sumner, H.R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.500-510
    • /
    • 1996
  • A Direct injection -mixing total -flow -control sprayer was developed and evaluated . The system provided precise application rates and minimized operator exposure to chemicals as well as providing a possibility for recycling container so f unused chemicals that can causes environmental contamination. Chemicals were metered and injected proportionally to the diluent flow rate to provide constant concentrations. The main diluent flow was varied in response to changes in travel speed. Experimental variables of the sprayer were the control interval, the sensitivity of flow regulating valve, the tolerance of control object and the sensitivity of the injection pump system. The optimal performance of the flow control system was with an average response time of 8.5 sec at an absolute steady state of error of 0.067 L/min (0.8% of flow rate). The average response time of the injection rate was -0.53 sec and the coefficient of variation (CV) of concentration was 3.2%.

  • PDF

A Study on the Efficiency Improvement of Wet Etching Equipment using 6-Sigma Method (6-시그마 기법을 이용한 습식식각 설비의 효율 개선에 관한 연구)

  • Yu, Jong-Hyeon;Kim, Chang-Eob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.347-350
    • /
    • 2011
  • 본 논문에서는 습식식각 설비의 Process 동작 간에 발생되는 설비의 비 가동 시간을 최소화하여 Throughput을 향상시키기 위하여 Monitoring 한 결과 Recipe 변경, 액 교환 발생, Tact 변경 등의 공정간 조건에 따라 대기시간이 발생(생산 지연시간 발생) 하는 것을 확인 하고 이를 개선하기 위한 연구이다. 연구 방법으로, Recipe Data 적용 시점을 약액 구간 처리 완료 시점에서 후속 기판이 대기하지 않고 연속 투입을 실시, Chamber Drain과 약액 Tank 전환이 동시에 이루어지고 액 교환 동작 중 Pump Spray의 연속성을 유지하는 무정지 액 교환 Sequence 적용, Tact 적용 시점을 전 기판 배출 확인 후 실시하는 것을 약액 구간 처리 완료 후 적용의 3가지 방법을 6시그마의 DMAIC 기법을 활용하였다. 연구 결과 개선 전 비 가동 시간이 설비 대당 1일 28분 시그마 Level 3.40 이었던 것을 개선 후 설비 대당 1일 17분 시그마 Level 5.3 으로 개선됨을 확인 할 수 있다.

  • PDF

A Study on the Combustion and Exhaust Gas Characteristics of Single Cylinder Engine for DME and Diesel (DME와 디젤 단기통 엔진의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Hyun-Chul;Kang, Woo;Kim, Byoung-Soo;Park, Sang-Hoon;Chung, Jae-Woo;Park, Jong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.80-89
    • /
    • 2004
  • In order to confront the increasing air pollution and the tightening emission restrictions, this research developed a diesel engine using DME, the advanced smoke-free alternative fuel. By numerical analysis, flow field, spray, and combustion phenomenon of the DME engine was presented. Using an experimental method, the configuration of the fuel supply system and operation/power performance was tested with the current plunger pump. Most emission performance, especially smoke performance was significantly improved. The possibility of conversion from the current diesel engine into the DME engine was affirmed in this research. However, it was found that the increase of engine RPM and fuel amount need to be properly adjusted through matching the characteristics of fuel and injector for further improvement.

Exposure and Risk Assessment of Operators to Insecticide Acetamiprid during Treatment on Apple Orchard

  • Kim, Eunhye;Moon, Joon-Kwan;Lee, Hyeri;Kim, Suhee;Hwang, Yon-Jin;Kim, Byung-Joon;Lee, Jinbeum;Lee, Dong-Hyuk;Kim, Jeong-Han
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.239-245
    • /
    • 2013
  • Occupational exposure and risk assessment were conducted to evaluate the safety of operators when insecticide acetamiprid was applied to apple orchard using a speed sprayer. Dermal patches, cotton gloves, socks, and masks were used to monitor the dermal exposure, and personal air pump with solid sorbent was used to measure the potential inhalation exposure. In validation to analytical methods, the limit of detection and limit of quantitation were 0.25 ng and 1 ng, respectively. Good reproducibility (coefficient variation < 4%), linearity (coefficient determination > 0.999), and recovery (85.3-118.2%) were obtained. Trapping efficiency of solid sorbent was 96.4% while breakthrough did not occur. Only hand exposure was measured on the gloves during mixing/loading to give $33-1,132{\mu}g$. Exposure amount of operator 3 among 4 workers was noticeably high. The total volumes of spray liquid for operators were $535-1,235mL{\cdot}h^{-1}$, corresponding to 0.03-0.08% of the applied spray solution. Highest contaminated parts of body were thighs, chest, and lower legs. The inhalation exposure ratio to the total application amount was significantly low. However, wind seemed to affect the inhalation exposure of operator. For risk assessment, margin of safety was calculated by the application of cloth and dermal penetration rate to obtain values of much larger than 1 in all cases. Therefore, health risk of operators during treatment of acetamiprid in apple orchard could be of least possibility.

Effects of Yittrium and Manganese on the PTCR Barium Titanate Synthesized by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 합성한 PTCR Barium Titanate에 미치는 Y와 Mn의 효과)

  • 김복희;이정형;윤연현;최의석;정웅기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1169-1177
    • /
    • 1995
  • Barium nitrate and yittrium nitrate were dissolved into distilled water. Titaium hydroxide precipitated from titanium chloride with NH4OH was dissolved into nitric acid. Each aqueous solution was mixed for 12 hr in the composition of Ba1-xYxTiO3 (x=0.1∼0.6) and the concentration of mixed solution was 0.1 mol/ι. The mixed solution was sprayed with an ultrasonic atomizer and carried into an electric furnace which was kept at 900∼1000$^{\circ}C$ and pyrolyzed. Pyrolyzed powders were collected on the glass filter with vacuum pump. Aqueous Mn solutiion was added into the synthesized powders, mixed with ultrasonic vibration and sintered at 1300∼1400$^{\circ}C$. Synthesized powders were characterized with SEM, XRD, DT-TGA, and BET. Microsture and resistivity of sintered body were investigated with SEM and multimeter. The results of this experiment were as follows; 1) Yittrium dooped BaTiO3 powders were synthesized above 950$^{\circ}C$. 2) The average particle sizes of powders from BET specific surface area and SEM were 0.045$\mu\textrm{m}$, 0.046$\mu\textrm{m}$ respectively. The particle size distribution was narrow in the range of 0.1∼1.0$\mu\textrm{m}$ from SEM. 3) Room temperature resistivity and pmax/pmin of 0.4 mol% Y doped specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 102∼3 respectively. 4) Room temperature resistivity and pmax/pmin of 0.4 mol% Y and 0.04 at% Mn added specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 106∼7 respectively. 5) Grain growth was inhibited with addition of Y2O3 and enhanced in addition of Mn by 0.05 atm%.

  • PDF